

Relaxed Algorithmic Differentiation

Neil Kichler, Uwe Naumann CSE25 Wednesday 5th March, 2025

Algorithmic Differentiation (AD)

Computes tangents (forward-mode) or adjoints (reverse-mode) for

$$F^*: \mathbb{R}^n \to \mathbb{R}^m$$

with machine accuracy **at a point** *x*.

This talk:

Get derivative information over a compact range of inputs.

*implemented as a computer program

Relaxations

A deterministic way to bound outputs of a function.

Interval Arithmetic:

• Box with lower/upperbound in range

McCormick Relaxations:

- Interval +
- Convex/Concave relaxation

	7
	(

Relaxation of nonconvex, nonconcave function.

Why relax?

- Uncertainty quantification
- Verified computing
- Constraint propagation/satisfaction
- Nonconvex optimization:
 - Subdomain separability [1]
 - Lower bounding in (deterministic) global optimization [2]

- 1. Interval Arithmetic
- 2. McCormick Relaxations
- 3. AD \leftrightarrow Relaxations
- 4. Examples
- 5. Conclusion

Interval Arithmetic

Interval Arithmetic

Computes function bounds:

Replace $x \in \mathbb{R}$ with $X \in \mathbb{IR}$: $\mathbb{IR} := \{[a,b] \mid a \leq b \land a, b \in \overline{\mathbb{R}}\},\$ $X = [a,b] := \{x \in \mathbb{R} \mid a \leq x \leq b\}.$

 \hookrightarrow interval extension:

 $F(X) \supseteq \{f(x) \mid x \in X\}.$

Refinement of: sin(cos(xy)y) > 0.5

Fundamental Theorem of Interval Arithmetic

The interval extension $F : \mathbb{IR}^n \to \mathbb{IR}$ of $f : \mathbb{R}^n \to \mathbb{R}$ is guaranteed to enclose the range of f over the inputs in $X = (X_0, \dots, X_n)$, i.e., range $(f) \subseteq F(X)$ [3].

Interval Arithmetic

IA has fundamental shortcomings:

- Dependency problem: E.g., $x^2 4x$ vs. $(x 2)^2 4$. \hookrightarrow partially addressable through symbolic rewriting.
- Wrapping Effect: fix would require different arithmetic.
- Limited by hardware intrinsics accuracy and rounding support.

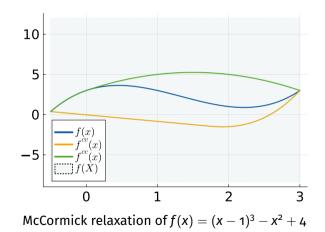
McCormick Relaxations

McCormick Relaxations

Used in lower bounding of Branch & Bound methods.

Provides:

- $f^{cv}(x)$: Convex relaxation at x $f^{cc}(x)$: Concave relaxation at x
 - f(X) : Interval over X.



McCormick Relaxations from an AD perspective

Both conceptually start with a computational graph. Then:

AD:

- diff. rules of basic ops
- chain rule
- faster derivatives through symbolic AD (e.g., matmul)

McCormick relaxation:

- relaxations of basic ops
- composition rule
- tighter relaxations of special composite functions possible (e.g., x log(x))

Relaxations more broadly

Many ways to relax:

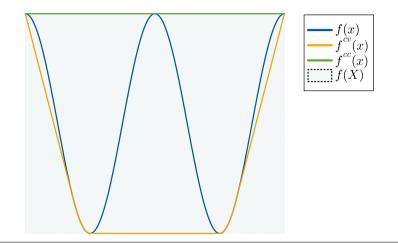
Primitive relaxations via, e.g., αBB using Hessian information.

Aside: Finding the optimal relaxation is again an optimization problem \hookrightarrow Can be solved by SDP/SOCP.

But: Tradeoff between computation time of relaxation and number of executed branches in Branch & Bound methods.

 $\hookrightarrow\,$ McCormick relaxations form a good compromise

McCormick Elementary Relaxation: Cosine



McCormick Composition Rule

Let $X \subseteq \mathbb{R}^n, Z \subseteq \mathbb{R}$ be nonempty convex sets. For a composite function $g = F \circ f$, where $f : X \to Z$ and $F : Z \to \mathbb{R}$, with known convex relaxations $f^{cv} : X \to \mathbb{R}$, $F^{cv} : Z \to \mathbb{R}$, and concave relaxations $f^{cc} : X \to \mathbb{R}$, $F^{cc} : Z \to \mathbb{R}$, the convex and concave relaxations of g can be computed by

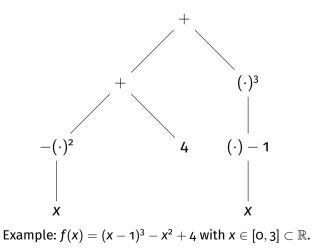
$$g^{cv}(\boldsymbol{x}) = F^{cv}(\operatorname{mid}(f^{cv}(\boldsymbol{x}), f^{cc}(\boldsymbol{x}), z_{\min})), \tag{1}$$

and

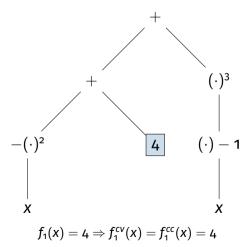
$$g^{cc}(\boldsymbol{x}) = F^{cc}(\operatorname{mid}(f^{cv}(\boldsymbol{x}), f^{cc}(\boldsymbol{x}), z_{\max})), \qquad (2)$$

respectively.

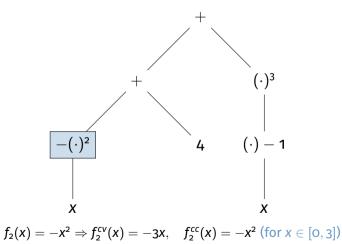
McCormick Relaxations: By Example



McCormick Relaxations: Constant

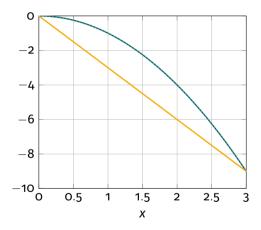


McCormick Relaxations: Concave



McCormick Relaxations: Concave

 $f_2(x) = -x^2$ over $x \in [0, 3]$ As f_2 is concave \rightarrow compute chord: $x^{L} = 0, \quad x^{U} = 3$ $f_2^{cv}(x)$ $= -(x^{U})^{2} + \frac{-(x^{U})^{2} - (-(x^{L})^{2})}{x^{U} - x^{L}}(x - x^{U})$ = -3X $f_2^{cc}(x) = -x^2$



McCormick Relaxations: Add

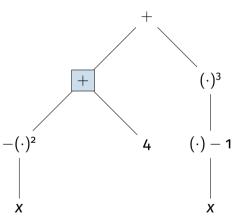
In general:

$$\begin{split} f_3(x) &= f_1(x) + f_2(x) \\ f_3^{cv}(x) &= f_1^{cv}(x) + f_2^{cv}(x) \\ f_3^{cc}(x) &= f_1^{cc}(x) + f_2^{cc}(x) \end{split}$$

So:

$$f_3^{cv}(x) = -3x + 4$$

 $f_3^{cc}(x) = -x^2 + 4$



McCormick Relaxations: Subtract

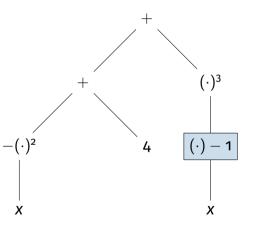
As

$$f_4(x) = x - 1$$

is affine:

$$f_4^{cv}(x) = x - 1$$

$$f_4^{cc}(x) = x - 1$$



McCormick Relaxations: Cubed

Let

$$f_5(x)=x^3$$

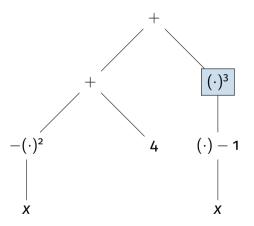
for *x* ∈ [−1, 2].

McCormick Composition

$$g^{cv}(x) = F^{cv}(\operatorname{mid} \{f^{cv}(x), f^{cc}(x), z^{min}\})$$

$$g^{cc}(x) = F^{cc}(\operatorname{mid} \{f^{cv}(x), f^{cc}(x), z^{max}\})$$

See Desmos.



McCormick Relaxations: Result

Back to

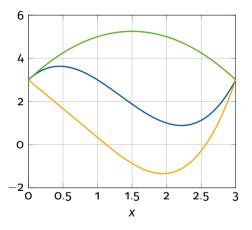
$$f(x) = (x - 1)^3 + (-x^2 + 4)$$

for $x \in [0, 3]$.

Relaxations:

 $f^{cv}(x) = f^{cv}_5(x) + f^{cv}_3(x)$

$$f^{\rm cc}(x)=f^{\rm cc}_5(x)+f^{\rm cc}_3(x)$$



See Desmos.

$\mathsf{AD} \leftrightarrow \mathsf{Relaxations}$

Tangent AD \leftrightarrow McCormick relaxation

mccormick<tangent<T>>tangent<mccormick<T>>Tangent of McCormick relaxationMcCormick relaxation of Tangent↓↓Linearized relaxationsNonlocal derivative information

$\textbf{Adjoint} \ \textbf{AD} \leftrightarrow \textbf{McCormick} \ \textbf{relaxation}$

mccormick<adjoint<T>>adjoint<mccormick<T>>Adjoint of McCormick relaxation [4]McCormick relaxation of Adjoint↓↓Linearized relaxationsNon-local derivative information

Tightness of non-local derivative bounds

ad<relaxation<T>> provides enclosures of derivatives that contain all possible values of the derivative over the specified domain.

Tightness?

How many domain splits are required to approach true bound?

- Interval: converges linearly
- McCormick: converges quadratically

What can we do with relaxed AD?

Function *f* is partially separable, if:

$$f(x) = \sum_{i=1}^{p} f^{[i]}(x^{[i]})$$

Optimization can simplify from:

 $\min_{x} f(x),$

to:

$$\sum_{j=1}^{p} \min_{x^{[j]}} f^{[j]}(x^{[j]}).$$

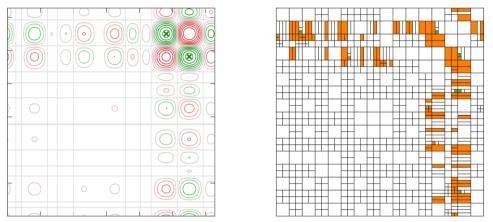
But, consider:

$$f(x) = -\exp(-\frac{1}{2}\sum_{i=1}^{n}x_{i}^{2})$$

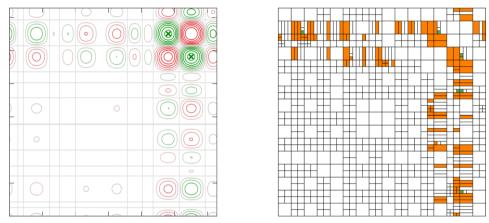
Not partially seperable in the typical sense. \hookrightarrow structural separability correctly identifies decomposibility of f.

How?

Monotonicity test of parts of computational graph using relaxed AD.

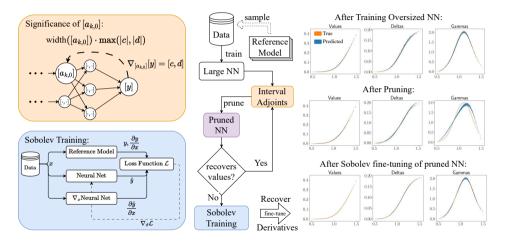


B&B optimization of Shubert function with cutoff and monotonicity tests.



More than 40 times fewer B&B nodes generated by otherwise same algorithm.

Example: Sobolev pruning [5]



Relaxed AD implementation

- Directly possible for operator-overloading based tools [†].
- Source-to-Source needs understanding of McCormick relaxations:
 → Could be implemented as another pass, similar in style to AD.

[†]modulo details of OO-tool, like passive values etc.

Existing/Upcoming Tools

CPU:

- dco/c++ with boost-interval/MC++ (or any other operator-overloading based AD-tool)
- MC++
- McCormick.jl

GPU:

- CuInterval
- CuMcCormick
- CuTangent

Conclusion

Takeaway:

- Potential to extend local derivative information to a whole region.
- Relaxations of AD are underexplored.
- Both mccormick<ad<T>> and ad<mccormick<T>> useful concepts.
- Development for GPUs ongoing.

APPLY AUTODIFF AND RELAX

Slides online:

References

- [1] Jens Deussen and Uwe Naumann. "Subdomain separability in global optimization". In: Journal of Global Optimization 86.3 (2023), pp. 573–588.
- [2] Dominik Bongartz et al. "Deterministic global optimization of steam cycles using the IAPWS-IF97 model". In: *Optimization & Engineering* 21 (2020), pp. 1095–1131.
- [3] Ramon E. Moore et al. *Introduction to Interval Analysis*. Society for Industrial and Applied Mathematics, 2009.
- [4] Markus Beckers et al. "Adjoint Mode Computation of Subgradients for McCormick Relaxations". In: *Recent Advances in Algorithmic Differentiation*. 2012, pp. 103–113. ISBN: 978-3-642-30023-3.
- [5] Neil Kichler et al. "Towards Sobolev Pruning". In: *Proceedings of the Platform for Advanced Scientific Computing Conference*. PASC '24. Zurich, Switzerland: Association for Computing Machinery, 2024. ISBN: 9798400706394.

Backup Slides

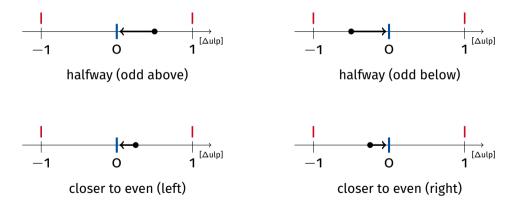
More on Interval Arithmetic Rounding

We use the CUDA intrinsic functions which use round-to-nearest-even.

- if halway between two floating point numbers \rightarrow pick even.
- else \rightarrow pick nearest.
- Error of 1 ulp in intrinsic results in 2.5 ulp max error for interval lower & upper bound, i.e. for lower bound: $|\inf(F_{analytic}(X)) \inf(F(X))| \le 2.5$.
- 8 Scenarios:
 - halfway (odd above/below),
 - closer to even/odd (left/right),
 - exact (even/odd).

Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):



Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):

