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Algorithmic Differentiation (AD)

Computes tangents (forward-mode) or adjoints (reverse-mode) for
F R — R™
with machine accuracy at a point x.

This talk:

Get derivative information over a compact range of inputs.

“implemented as a computer program
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Relaxations

A deterministic way to bound outputs of a function.

Interval Arithmetic:

* Box with lower/upperbound in range

McCormick Relaxations:

* Interval + ) Relaxation of nonconvex,
e Convex/Concave relaxation nonconcave function.
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Why relax?

Uncertainty quantification

Verified computing

 Constraint propagation/satisfaction

Nonconvex optimization:
® Subdomain separability [1]
* Lower bounding in (deterministic) global optimization [2]
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Interval Arithmetic



Interval Arithmetic

Computes function bounds:

Replace x € R with X € TR:
IR :={[a,b]|a<bAabeR},
X =[a,b] :={xeR|a<x<b}
— interval extension:
F(X) 2 {f(x) [ x € X}.

Refinement of: sin(cos(xy)y) > 0.5

Fundamental Theorem of Interval Arithmetic

The interval extension F : IR" — IR of f : R" — R is guaranteed to enclose
the range of f over the inputs in X = (Xo, - -+ , Xp), i.e., range(f) C F(X) [3].
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Interval Arithmetic
IA has fundamental shortcomings:

* Dependency problem: E.g., x> — 4x vS. (X — 2)® — 4.
— partially addressable through symbolic rewriting.

e Wrapping Effect: fix would require different arithmetic.

e Limited by hardware intrinsics accuracy and rounding support.
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McCormick Relaxations



McCormick Relaxations

Used in lower bounding of
Branch & Bound methods.

Provides: 51
£ (x) : Convex relaxation at x Q

. 0
€ (x) : Concave relaxation at x — I
el [
f (X) : Interval over X. iﬁlﬁl’.’jﬁ()((g;)
0 1 2 3

McCormick relaxation of f(x) = (x — 1)} — x*> + 4
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McCormick Relaxations from an AD
perspective

Both conceptually start with a computational graph. Then:

AD: McCormick relaxation:
e diff. rules of basic ops e relaxations of basic ops
e chain rule e composition rule
* faster derivatives through * tighter relaxations of special
symbolic AD (e.g., matmul) composite functions possible

(e.g., x log(x))
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Relaxations more broadly

Many ways to relax:
Primitive relaxations via, e.g., BB using Hessian information.

Aside: Finding the optimal relaxation is again an optimization problem
< Can be solved by SDP/SOCP.

But: Tradeoff between computation time of relaxation and number of
executed branches in Branch & Bound methods.

— McCormick relaxations form a good compromise
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McCormick Elementary Relaxation: Cosine
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McCormick Composition Rule

Let X C R",Z C R be nonempty convex sets. For a composite function
g=Fof,wheref:X — ZandF:Z — R, with known convex relaxations
f:X—R,FV:Z— R,and concave relaxations f : X — R, F*“ : Z — R,
the convex and concave relaxations of g can be computed by

g% (x) = F(mid(f(x), f<(x), Zmin)), (1)

and
g (x) = FE(mid(f(x), f(x), Zmax)). (2)

respectively.
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McCormick Relaxations: By Example

/\
/\

X X

() =1

Example: f(x) = (x —1)3 — x2 + 4 with x € [0,3] C R.
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McCormick Relaxations: Constant
_|_

+/ \(
—(-)/ ()

.)3

X X
Fi(0) = 4= () = F(x) = &
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McCormick Relaxations: Concave

falx) = =x* = f{'(x) = =3x,  f{°(x) = —x* (forx < [0.3])
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McCormick Relaxations: Concave

f2(x) = —x* over x € [0, 3]

As f, is concave — compute chord:
xt=0, xV=3
2" (%)
_ _(XU)z + —(XU);L(;L(XL)z)(X _ XU)
= —3X
() =
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McCormick Relaxations: Add

In general: +
£(x) = fi(X) + £o(x) \
$Y() = £ (%) + 5 (%) 0
5900 = fe() + f55(%)

So:
V(X)) =-3X+4 —(-) 4 ()1

00 = +4
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McCormick Relaxations; Subtract

As +
fu(x) =x =1
is affine: / \
/ + ()3
X)) =x—1 \
C(x) =x—1 =)y 4 ()1
X X
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McCormick Relaxations; Cubed

Let +
fs(x) = %2,

for x € [-1,2]. /
McCormick Composition " 9
g% (x) = F(mid {f*'(x), f(x), 2""}) / \
g«(x) = Fee(mid{f(x), f*(x), 2"*}) —(-)? 4 (-) —1
See Desmos.

X X
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https://www.desmos.com/calculator/dz00lipmkm

McCormick Relaxations: Result

Back to
FX)=(x =17+ (=X +4)
for x € [0,3].

Relaxations:
fee) =1 (x) + 5 (x)
Fo0) = F500) 500

See Desmos.
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https://www.desmos.com/calculator/jpujv31pp8

AD < Relaxations



Tangent AD <> McCormick relaxation

mccormick<tangent<T>> tangent<mccormick<T>>

Tangent of McCormick relaxation McCormick relaxation of Tangent
N2 %
Linearized relaxations Nonlocal derivative information
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Adjoint AD <+ McCormick relaxation

mccormick<adjoint<T>> adjoint<mccormick<T>>

Adjoint of McCormick relaxation [4] McCormick relaxation of Adjoint
N/ 4
Linearized relaxations Non-local derivative information
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Tightness of non-local derivative bounds

ad<relaxation<T>> provides enclosures of derivatives that contain all
possible values of the derivative over the specified domain.

Tightness?

How many domain splits are required to approach true bound?
e Interval: converges linearly

e McCormick: converges quadratically
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What can we do with relaxed AD?



Example: Subdomain Separability [1]

Function f is partially separable, if:
p - -
x) = > i),
i=1
Optimization can simplify from:

minf (x).

to:

Z min fUI(xU1).
XUl

CSE25 Relaxed AD | Neil Kichler, Uwe Naumann

22



Example: Subdomain Separability [1]

But, consider:
n
C e ST 2
) = =03 )
Not partially seperable in the typical sense.
— structural separability correctly identifies decomposibility of f.

How?
Monotonicity test of parts of computational graph using relaxed AD.

CSE25 Relaxed AD | Neil Kichler, Uwe Naumann 23



Example: Subdomain Separability [1]
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B&B optimization of Shubert function with cutoff and monotonicity tests.
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Example: Subdomain Separability [1]
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More than 40 times fewer B&B nodes generated by otherwise same algorithm.
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Significance of [a,]:
width([a,]) - max(|c], |d])

N Vigl 4] = [e, d]

Example: Sobolev pruning [5]
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Relaxed AD implementation

* Directly possible for operator-overloading based tools *.

e Source-to-Source needs understanding of McCormick relaxations:
— Could be implemented as another pass, similar in style to AD.

"modulo details of 00-tool, like passive values etc.
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Existing/Upcoming Tools
CPU:

e dco/c++ with boost-interval/MC++ (or any other operator-overloading based AD-tool)

o MC++
e McCormick.jl
GPU:
e Culnterval
e CuMcCormick

e CuTangent
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https://nag.com/automatic-differentiation/
https://github.com/omega-icl/mcpp/
https://github.com/PSORLab/McCormick.jl
https://github.com/neilkichler/cuinterval
https://github.com/neilkichler/cumccormick
https://github.com/neilkichler/cutangent

Conclusion

Takeaway:
e Potential to extend local derivative information to a whole region.
e Relaxations of AD are underexplored.
e Both mccormick<ad<T>> and ad<mccormick<T>> useful concepts.

e Development for GPUs ongoing.
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Slides online:



https://neilkichler.github.io/cse25_relaxed_ad/slides.pdf
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More on Interval Arithmetic Rounding

We use the CUDA intrinsic functions which use round-to-nearest-even.
e if halway between two floating point numbers — pick even.
e else — pick nearest.

e Error of 1 ulp in intrinsic results in 2.5 ulp max error for interval lower
& upper bound, i.e. for lower bound: |inf(Fanaytic(X)) — inf(F(X))| < 2.5.

e 8 Scenarios:
* halfway (odd above/below),
* closer to even/odd (left/right),
® exact (even/odd).
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Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):

A
p

|
| l
w 1

- —
|
-
@)

- —

1 o [Aulp] [Aulp]
halfway (odd above) halfway (odd below)
I I I I
—f—f———t+— —f—— 1
1 o 1 [Aulp] 1 o [Aulp]
closer to even (left) closer to even (right)
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Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):

closer to odd (left) closer to odd (right)
I I I I
T % T [Aulp] T % T [Aulp]
-1 (0] 1 o 1 2
exact (even) exact (odd)
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