
Relaxed Algorithmic Differentiation
Neil Kichler, Uwe Naumann CSE25 Wednesday 5th March, 2025



Algorithmic Differentiation (AD)

Computes tangents (forward-mode) or adjoints (reverse-mode) for

F* : Rn → Rm

with machine accuracy at a point x.

This talk:
Get derivative information over a compact range of inputs.

*implemented as a computer program
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Relaxations

A deterministic way to bound outputs of a function.

Interval Arithmetic:
• Box with lower/upperbound in range

McCormick Relaxations:
• Interval +
• Convex/Concave relaxation

Relaxation of nonconvex,
nonconcave function.
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Why relax?

• Uncertainty quantification

• Verified computing

• Constraint propagation/satisfaction

• Nonconvex optimization:
• Subdomain separability [1]
• Lower bounding in (deterministic) global optimization [2]
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Interval Arithmetic



Interval Arithmetic
Computes function bounds:

Replace x ∈ R with X ∈ IR:
IR := {[a,b] | a ≤ b ∧ a,b ∈ R},

X = [a,b] := {x ∈ R | a ≤ x ≤ b}.

↪→ interval extension:
F(X) ⊇ {f (x) | x ∈ X}.

Refinement of: sin(cos(xy)y) > 0.5

Fundamental Theorem of Interval Arithmetic
The interval extension F : IRn → IR of f : Rn → R is guaranteed to enclose

the range of f over the inputs in X = (X0, · · · , Xn), i.e., range(f ) ⊆ F(X) [3].
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Interval Arithmetic

IA has fundamental shortcomings:

• Dependency problem: E.g., x2 − 4x vs. (x − 2)2 − 4.
↪→ partially addressable through symbolic rewriting.

• Wrapping Effect: fix would require different arithmetic.

• Limited by hardware intrinsics accuracy and rounding support.
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McCormick Relaxations



McCormick Relaxations

Used in lower bounding of
Branch & Bound methods.

Provides:
f cv (x) : Convex relaxation at x
f cc (x) : Concave relaxation at x

f (X) : Interval over X.

McCormick relaxation of f (x) = (x − 1)3 − x2 + 4
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McCormick Relaxations from an AD
perspective

Both conceptually start with a computational graph. Then:

AD:
• diff. rules of basic ops
• chain rule
• faster derivatives through

symbolic AD (e.g., matmul)

McCormick relaxation:
• relaxations of basic ops
• composition rule
• tighter relaxations of special

composite functions possible
(e.g., x log(x))
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Relaxations more broadly

Many ways to relax:

Primitive relaxations via, e.g., αBB using Hessian information.

Aside: Finding the optimal relaxation is again an optimization problem
↪→ Can be solved by SDP/SOCP.

But: Tradeoff between computation time of relaxation and number of
executed branches in Branch & Bound methods.

↪→ McCormick relaxations form a good compromise
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McCormick Elementary Relaxation: Cosine
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McCormick Composition Rule

Let X ⊆ Rn, Z ⊆ R be nonempty convex sets. For a composite function
g = F ◦ f , where f : X → Z and F : Z → R, with known convex relaxations
f cv : X → R, Fcv : Z → R, and concave relaxations f cc : X → R, Fcc : Z → R,
the convex and concave relaxations of g can be computed by

gcv(x) = Fcv(mid(f cv(x), f cc(x), zmin)), (1)

and
gcc(x) = Fcc(mid(f cv(x), f cc(x), zmax)), (2)

respectively.
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McCormick Relaxations: By Example
+

+

−(·)2

x

4

(·)3

(·)− 1

x
Example: f (x) = (x − 1)3 − x2 + 4 with x ∈ [0, 3] ⊂ R.
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McCormick Relaxations: Constant
+
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−(·)2

x

4

(·)3

(·)− 1

x
f1(x) = 4 ⇒ f cv

1 (x) = f cc
1 (x) = 4
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McCormick Relaxations: Concave
+

+

−(·)2

x

4

(·)3

(·)− 1

x
f2(x) = −x2 ⇒ f cv

2 (x) = −3x, f cc
2 (x) = −x2 (for x ∈ [0, 3])
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McCormick Relaxations: Concave
f2(x) = −x2 over x ∈ [0, 3]

As f2 is concave → compute chord:

xL = 0, xU = 3

f cv
2 (x)

= −(xU)2 + −(xU)2−(−(xL)2)
xU−xL (x − xU)

= −3x

f cc
2 (x) = −x2
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McCormick Relaxations: Add

In general:
f3(x) = f1(x) + f2(x)
f cv
3 (x) = f cv

1 (x) + f cv
2 (x)

f cc
3 (x) = f cc

1 (x) + f cc
2 (x)

So:
f cv
3 (x) = −3x + 4

f cc
3 (x) = −x2 + 4
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x
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McCormick Relaxations: Subtract

As
f4(x) = x − 1

is affine:

f cv
4 (x) = x − 1

f cc
4 (x) = x − 1

+
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−(·)2
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4

(·)3
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x
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McCormick Relaxations: Cubed
Let

f5(x) = x3,

for x ∈ [−1, 2].

McCormick Composition
gcv(x) = Fcv(mid{f cv(x), f cc(x), zmin})
gcc(x) = Fcc(mid{f cv(x), f cc(x), zmax})

See Desmos.
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McCormick Relaxations: Result
Back to

f (x) = (x − 1)3 + (−x2 + 4)

for x ∈ [0, 3].

Relaxations:

f cv(x) = f cv
5 (x) + f cv

3 (x)

f cc(x) = f cc
5 (x) + f cc

3 (x)

See Desmos.
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AD ↔ Relaxations



Tangent AD ↔ McCormick relaxation

mccormick<tangent<T>> tangent<mccormick<T>>

Tangent of McCormick relaxation McCormick relaxation of Tangent
↓ ↓

Linearized relaxations Nonlocal derivative information
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Adjoint AD ↔ McCormick relaxation

mccormick<adjoint<T>> adjoint<mccormick<T>>

Adjoint of McCormick relaxation [4] McCormick relaxation of Adjoint
↓ ↓

Linearized relaxations Non-local derivative information
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Tightness of non-local derivative bounds

ad<relaxation<T>> provides enclosures of derivatives that contain all
possible values of the derivative over the specified domain.

Tightness?
How many domain splits are required to approach true bound?

• Interval: converges linearly
• McCormick: converges quadratically
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What can we do with relaxed AD?



Example: Subdomain Separability [1]
Function f is partially separable, if:

f (x) =
p∑

i=1

f [i](x[i]).

Optimization can simplify from:

min
x

f (x),

to:
p∑

j=1

min
x[j]

f [j](x[j]).
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Example: Subdomain Separability [1]

But, consider:

f (x) = − exp(− 1
2

n∑
i=1

x2
i )

Not partially seperable in the typical sense.
↪→ structural separability correctly identifies decomposibility of f .

How?
Monotonicity test of parts of computational graph using relaxed AD.
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Example: Subdomain Separability [1]

B&B optimization of Shubert function with cutoff and monotonicity tests.
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Example: Subdomain Separability [1]

More than 40 times fewer B&B nodes generated by otherwise same algorithm.
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Example: Sobolev pruning [5]

Reference
Model

Large NN

Interval
Adjointsprune

train

Sobolev
Training

recovers
values?

Yes

No Recover

Derivatives

After Sobolev fine-tuning of pruned NN:

After Pruning:

After Training Oversized NN:

Pruned
NN

fine-tune

Data

sample
Significance of :

Sobolev Training:

width
True
Predicted
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Relaxed AD implementation

• Directly possible for operator-overloading based tools †.

• Source-to-Source needs understanding of McCormick relaxations:
↪→ Could be implemented as another pass, similar in style to AD.

†modulo details of OO-tool, like passive values etc.
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Existing/Upcoming Tools
CPU:

• dco/c++ with boost-interval/MC++ (or any other operator-overloading based AD-tool)

• MC++
• McCormick.jl

GPU:
• CuInterval
• CuMcCormick
• CuTangent
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Conclusion

Takeaway:

• Potential to extend local derivative information to a whole region.

• Relaxations of AD are underexplored.

• Both mccormick<ad<T>> and ad<mccormick<T>> useful concepts.

• Development for GPUs ongoing.
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APPLY
AUTODIFF

AND

RELAX

Slides online:

https://neilkichler.github.io/cse25_relaxed_ad/slides.pdf
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More on Interval Arithmetic Rounding
We use the CUDA intrinsic functions which use round-to-nearest-even.

• if halway between two floating point numbers → pick even.
• else → pick nearest.
• Error of 1 ulp in intrinsic results in 2.5 ulp max error for interval lower

& upper bound, i.e. for lower bound: |inf(Fanalytic(X))− inf(F(X))| ≤ 2.5.
• 8 Scenarios:

• halfway (odd above/below),
• closer to even/odd (left/right),
• exact (even/odd).
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Interval Arithmetic Rounding
Scenarios given 1 ulp error (round-to-nearest-even):

[∆ulp]−1 0 1
halfway (odd above)

[∆ulp]−1 0 1
halfway (odd below)

[∆ulp]−1 0 1
closer to even (left)

[∆ulp]−1 0 1
closer to even (right)
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Interval Arithmetic Rounding
Scenarios given 1 ulp error (round-to-nearest-even):

[∆ulp]0 1 2
closer to odd (left)

[∆ulp]0 1 2
closer to odd (right)

[∆ulp]−1 0 1
exact (even)

[∆ulp]0 1 2
exact (odd)
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