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Abstract

High-dimensional stochastic models are indispensable in many real-world applications, such as
biology, material science and quantitative finance. Stochastic differential equations have played
a crucial role in advancing these domains, as noisy environments are integral to understanding
complex phenomena beyond the scope of standard dynamical system theory. However, in prac-
tice, the simulation of stochastic models requires expensive Monte Carlo methods. The recent
advancements in Machine Learning provide a promising avenue for creating much faster yet ac-
curate surrogate models, as illustrated in Differential Machine Learning. It augments the typical
supervised learning process with differential data labels obtained via automatic differentiation.
This additional loss factor results in an effective, unbiased form of regularization.
We extend the learning process of neural network-based surrogate models with second-order

derivative information. Using forward-over-reverse mode automatic differentiation and dimen-
sionality reduction techniques, it is feasible to find relevant second-order hessian-vector products.
If the three loss terms (payoff, differential payoff, and second-order differential payoff) are bal-
anced correctly, the additional second-order information significantly enhances the final accuracy
of the model. In a Bachelier model of a basket option with n correlated assets, we observe a dou-
bling in the final model accuracy. An improvement that cannot be obtained through the pro-
longed execution of the original (differential) training setup. A further case study around theHe-
ston model is considered. The ultimate goal is to create accurate surrogate models faster to bring
effective pricing and online risk assessment of complex models closer to reality. Beyond finance,
Second-Order Differential Machine Learning is a generally applicable tool for finding highly effi-
cient, accurate surrogate models of existing numerical models.
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1 Introduction

“Truth ... is much too complicated to allow anything but approximations.”
— John von Neumann, TheWorks of theMind

1.1 Motivation

High-dimensional stochastic models are necessary for modeling complex phenomena of the real
world. Fields like biology,material science, andquantitativefinance, amongmanyothers, embrace
using a stochastic process during simulation, as it is most often infeasible to rely on the funda-
mental governing physical equations. The techniques of stochastic modelling that were initially
developed in the field of statistical mechanics led to many domains that can now reason about
the macro perspective without getting stuck in an intractable simulation of a more fundamental
process. By adopting such a stochastic perspective one, however, introduces various uncertainties
into the computation and simulation of the process.

Therefore, quantifying uncertainty is quickly becoming an indispensable part of all scientific
fields. Thefieldofuncertaintyquantification is vast andwewill not attempt toprovide a thorough
introduction. But, consider buying a simple option. That is, imagine observing the current price
of your favourite company listed on a stock exchange. Let us normalize this price to be $100. You
have a good feeling that the price will go up in the next year, so you buy a call option for $5 (its
premium) that gives you the right to buy the stock at $100 (its strike price) exactly one year from
now. This is a EuropeanCall Option 1. The advantage over directly buying the stock is that in the
event of, e.g. a bad earnings call resulting in the price falling to $80, the option will expire but you
only lost its premium ($5). In the event of the price increasing, however, you gain asymmetrically.
Namely, the difference of the price at the expiration date (called maturity) and the strike price.

In short, the payoff is given by: (ST −K)+, whereST is the price at time of maturity T and K
is the strike price. The ()+ is shorthand for the function: max(x, 0). Of course, we do not know
in advance what will happen to the price. A lot of factors can influence it, including the market
volatility, liquidity, sentiment, interest rates, political events, etc. So, how certain can we really be

1As opposed to, e.g., an American Option which gives you the right to buy the stock from time of purchase up to
the expiration date. Many other exotic options exist. We will focus, for simplicity, on the European Call Option.
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1 Introduction

about the trade ending with a positive outcome? Or, in other words: What is the expectation of
the payoff of this option? What we are interested in is the price or value V of the option2:

V = E[ν(ST ,K)],

where ν(ST ,K) = (ST − K)+ is the payoff function defined as before. To get closer to an-
swering this question we must build up a model. A model that can express the dynamics of the
spot price St of the underlying asset at time t. In general, we consider a Stochastic Differential
Equation (SDE) which for now can be described abstractly by:

dSt = a(S, t) dt+ b(S, t) dWt,

where dWt denotes aWiener process, also known as Brownianmotion, and a : R× [0, T ]→ R,
b : R × [0, T ] → R are functions describing the drift and volatility of the price. We can now
sample from such a model which could lead to the following trajectories:

t

St

0 T

100

Given infinitely many paths of such an ergodic, stochastic process we could finally find a price
by averaging the payoffs of all paths. This is of course computationally not feasible. Instead, we
will describe implementation techniques to find approximate solutions alongside some popular
models in chapter 3. For now, we want to finish this introduction with the heart of the problem
domain: How sensitive is the computed price to the initial configuration? We are thus interested
in:

∂V

∂θ
,

where θ represents the input parameterwewish to take the partial derivativewith respect to. Con-
sidering the sensitivity to the initial spot price S0, we get ∂V

∂S0
. These price sensitivities are known

as the Greeks in finance. The naming will later become apparent. Sensitivity analysis provides a
2For now we do not consider any discounting factor based on, e.g., risk-free positive interest rates.
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1.1 Motivation

powerful toolset to quantify uncertainty in a model. In particular, we concentrate on derivative
based methods. Through the advancements in Algorithmic Differentiation (AD) it is possible,
with machine precision, to efficiently find (higher-order) derivative information for many com-
puter programs. It is a fundamental building block of this work and will therefore be reviewed in
detail in section 2.3 of the background chapter.

Financial institutions have great interest in understanding such uncertainties as they impose
risk. Risk management has become an integral part of the financial industry. After the financial
crisis of 2008 many countries have realized the huge impact this industry can have to the entire
economy. As a result, the financial sector is now being put under more scrutiny. With regulations
like BASEL 3 the financial institutions must ensure that their computations adjust the value of
derivatives to consider various risks.

The above scenario will be the basis for the proceeding work as it captures the essence of the
fundamental challenge posed in options trading. Instead of describing many models in varying
domains, we thus focus exclusively onmodels fromoptions trading in this thesis. Besides its direct
real world applicability, it provides intuitive interpretations of the quantities we are interested in.
But the presented methods can be used beyond the realm of quantitative finance.

1.1.1 The need for surrogate models

The techniques for finding values based on averaging over a large set of samples are known as
Monte Carlo (MC) methods. The downside of such methods is that they are computationally
very expensive. For very simple models, analytic solutions may exist. But, in general, using more
interesting models or exotic payoff functions will lead to models without analytic solutions. The
Hestonmodel [19] is an example of a stochastic volatility model that, in general, has no analytical
closed form solution. As a special case, it has an analytical solution for a European payoff with
fixed parameters. This makes it an ideal candidate for a case study of the proposed methods. It
is described in chapter 3 amongst more fundamental models. As an alternative, we must find
surrogate models that execute much faster while staying sufficiently accurate.

The advancements in Machine Learning (ML) provide a promising avenue for the creation
of much faster, yet accurate surrogate models. Especially in high-dimensional settings, neural
network based methods excel because, in many occasions, they can overcome the curse of dimen-
sionality. Such surrogate models can be used in production settings where there exists a need for
near real time analysis and simulation. However, they are prone to overfitting and usually require
some formof regularizationwhichwill introduce a potential bias. Furthermore, they require large
training data sets and perform poorly in recovering the underlying risk variables.
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1 Introduction

1.1.2 Why Differential Machine Learning?

Themethods of DifferentialMachine Learning that were introduced byHuge and Savine [21] pro-
vide a promising avenue to tackle the traditional challenges neural network based surrogates face.
They demonstrate that incorporating differential data during training can significantly accelerate
the convergence speed and the accuracy of the resulting model. This approach forms the foun-

dation of the ideas explored in this thesis. Differential data refers to pathwise data samples
∂y

∂x
which can be used on top of the usual values x and labels y used during training. First shown
by Giles and Glasserman [15], such pathwise sensitivities can be efficiently found by using adjoint
AD3. But, how dowe recover the Greeks from pathwise sensitivities? In the seminal work of they
show that one can recover the prices of an option by performing the typical Least-Squaresmethod
over the payoffs of the individual paths. The power of thismethod lies in the fact thatmany prices
can be estimated with computed payoffs of a single MC pricing run. The samples, while noisy,
remain unbiased. Furthermore, this method generalizes to first and higher-order sensitivities. As
neural networks are prime candidates for performing least-squares regression the same principles
will apply. The precise formulation and use of pathwise sensitivities will be covered in chapter 4.
So, to answer the question: We use Differential Machine Learning because it can efficiently

learn surrogate models for predicting the prices and price sensitivities of arbitrary models given
limited unbiased samples.

1.2 Research Objective

A natural question arises: If differential data can improve the accuracy of a surrogate model, can
second-order differential data improve its accuracy even further? Wewant to address this question
and further split out our research interest into the following research questions.

Research Questions:

• Howdoes the accuracy and training speedof learned surrogatemodels changewhen trained
with second-order differential data?

• What are effective strategies for findingmeaningful tangent directions to be used in second-
order differential ML?

• How should the training procedure balance the different loss terms?

A fundamental issue that immediately arises when we consider second-order differential data is
that the computation of the Hessian will often turn out to be intractable. Therefore, we require
3Also known as reverse-mode AD or (more narrowly defined) as backpropagation inML.
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1.3 Contributions of this thesis

techniques to efficiently sample various directions via hessian-vector products. In many other
domains, similar ideas have already been applied [34, 44].

Note that we do not consider the problem of calibrating the model we wish to find a surrogate
for. Muchwork has already gone into this problem. Instead, we assume the parameters of the ref-
erencemodel to be calibrated already. Polala andHientzsch [39] extend the ideas ofDifferentialML
to learning from varying parameter sets. They further perform global optimization to find opti-
mal parameter sets as needed in calibration. Moreover,NeuralDifferential Equations [24]provide
a promising avenue for finding generatingmodels that adhere to the dynamics of the training data.
By injecting neural networks as parameters into the stochastic differential equation, Neural SDEs
can be used for fine-tuning existing models or as an alternative to off-the-shelve models. Most
important, Neural SDEs are fully differentiable making them ideal candidates to learn surrogate
models from. This brief aside should provide surrounding context to of the general applicability.

1.3 Contributions of this thesis

The contributions of this thesis are as follows:

• We present a generalized formulation of Differential Machine Learning to arbitrary neural
network based surrogate models.

• We replicate the key ideas presented byHuge and Savine [21] within this generalized frame-
work.

• We extend themethod to second-order differential data - what we refer to as Second-Order
Differential ML.

• We implement efficient versions of the above in JAX [5] that can run on GPUs and TPUs.

• We experimentally compare the different methods in terms of training speed and accuracy
of the learned surrogate model.

• We compare random directions for HVPs with directions from principal components of
the PCA.

1.3.1 Key Idea

For the impatient, we provide a very brief overviewof the key ideas presented in this thesis. Instead
of just learning a neural network surrogatemodel via the output values generated by the reference
model, Differential Machine Learning proposes to learn with derivative information that can be
obtained via adjoint AD. We extend the idea to second-order derivative information. However,
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1 Introduction

this is often infeasible since the fullHessian is too expensive to compute at each iteration. Instead,
we extract the directions of maximal variance in the derivative information using PCA. Those
directions are then used to compute hessian-vector-products which further inform the learning.

Figure 1.1: Visualization of Second-Order Differential Machine Learning.

1.3.2 Steps towards the main results

Before we describe the details of the outlined idea in chapter 6, we introduce the various concepts
needed for understanding the method. The structure is such that we incrementally build up the
methods needed for implementing Second-OrderDifferentialML. In chapter 2, the basics of neu-
ral networks, AD, and its implementation in JAXwill be reviewed. While in chapter 3 we present
common option price models that form the basis of learning surrogates. The mathematical justi-
fication of pathwise payoffs and sensitivities for pricing is given in chapter 4. We then introduce a
generalized view on Differential ML in chapter 5, before ending up at Second-Order Differential
ML. There wewill present the final results. We compare ourmethod to related work in chapter 7.
A conclusion with directions for future research is given in chapter 8.
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2 Background

“The biggest lesson that can be read from 70 years of AI research is that general
methods that leverage computation are ultimately the most effective, and by a
large margin.”

—Rich Sutton, The Bitter Lesson

In this chapter, we provide the necessary background knowledge that will be required to under-
stand many of the implementation details discussed throughout the next chapters. A very brief
introduction into neural networks and its learning process is given in section 2.1. After under-
standing back-propagation, this chapter dives deeper into the foundations of Algorithmic Differ-
entiation (AD) which is required to implement it efficiently for arbitrary functions. ADwill play
a crucial role in this thesis and it is thus highly advised to understand the ideas presented in sec-
tion 2.3. Finally, much of the presented code is implemented in JAX [5]. We provide an overview
and reasons for this choice in section 2.4.

2.1 Neural Networks

A neural network is a very general concept which, at its core, interleaves linear operations (e.g.,
matrix multiplication, convolution) with nonlinear operations (activation functions) to approx-
imate arbitrary functions. Let fϑ : X → Y denote the learned function of the neural network
with trainable parametersϑ1. These parameters are called the weights of the network. The func-
tion fϑ of the neural network learns from samples of input domainX to predict an output inY
such that it closely models the target function. This learning procedure represents an optimiza-
tion problem which can be stated as follows:

ϑ∗ = argmin
ϑ

E(x,y)∼D

[
‖y − ŷ‖22

]
, ŷ = fϑ(x), (2.1)

where ‖·‖2 is theL2 norm andD generates data samples (x,y) based on the reference model.
So, it minimizes the error by comparing the predicted output ŷ of the hypothesis function with
the target outputy. Throughout this thesis, a ·̂will highlight thatwe deal with an approximation.
1We deviate from the typical notation and useϑ instead of θ for the weights since we already use θ to represent the
parameters of the option pricing model. A list of notation can be found on page 69.
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2 Background

We thus want to minimize the expected generalization error, called risk. The learning problem
can be stated more generally by:

Definition 2.1 (Risk).
RD(ϑ) = E(x,y)∼D

[
L(fϑ(x),y)

]
, (2.2)

where L is the loss (e.g. L2). However, we cannot consider the entire data distribution and
must instead use a training set or sampler S . The samples of S are independently drawn fromD.
The observable risk thus differs from the risk and instead is called empirical risk.

Definition 2.2 (Empirical Risk).

RS(ϑ) =
1

m

m∑
i=1

L(fϑ(xi),yi), (2.3)

where {(xi,yi)}mi=1 ∼ S . Optimizing the empirical risk as a proxy for the true risk sets ma-
chine learning apart from traditional optimization where no such distinction exists. Since we will
be dealing almost exclusively with the empirical risk, we will use the shorthand notation J and
consider it the cost function.

Definition 2.3 (Cost).
J (ϑ) = RS(ϑ) (2.4)

2.1.1 Multi-Layer Perceptron

A common neural network structure is theMulti-Layer Perceptron (MLP). It interleaves a linear
mapping, i.e. a matrix multiplication of the weights with the input vector, with a nonlinear ac-
tivation function σ. Since the target labels could be offset from the origin, the MLP adds a bias
term b. In total it hasL layers resulting in:

fϑ(x) = W [L−1]σ � (· · · (W [1]σ � (W [0]x+ b[0]) + b[1]) · · · ) + b[L−1], (2.5)

where

W [l] ∈ Rnl+1×nlare the weights of layer l,

b[l] ∈ Rnl+1 is the bias of layer l,

ϑ = (W [0],W [1], . . . ,W [L−1], b[0], b[1], . . . , b[L−1]).

The�denotes an elementwise operation as is the case for the activation function. As a convenient
shorthand notation, consider a linear layer.
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2.1 Neural Networks

input
layer

hidden layer

output
layer

Figure 2.1: Visualization of a MLP with 3 hidden layers.

Definition 2.4. Linearnl+1←nl
= W [l]x+ b[l], withW [l] and b[l] as defined above.

Example 2.1.1 (MLP with 3 hidden layers). Let fϑ : R3 → R represent the learned function
defined as:

fϑ = Linearn4←n3 ◦ σ ◦ Linearn3←n2 ◦ σ ◦ Linearn2←n1 ◦ σ ◦ Linearn1←n0 ,

where n0 = 3, n1 = 4, n2 = 4, n3 = 4, n4 = 1, and σ = ReLU is performed elementwise.
The ◦ is function composition defined as usual. A visual representation of the network is shown
in Figure 2.1.
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Figure 2.2: Visualization of a hidden layer.
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2 Background

The edges represent the weights of the linear layer. A hidden node is a non-linear activation
implemented through σ. A detailed representation of a hidden layer is shown in Figure 2.2.

2.1.2 Activation Functions

The activation function σ is often chosen to be a Rectified Linear Unit (ReLU) which is just el-
ementwise max(x,0). This function is theoretically not differentiable at 0. In practice, it turns
out that a piecewise linear function will produce correct derivative information for the individ-
ual linear pieces, producing a Heaviside step function. However, we want to find second-order
derivative information of this model and thus need to consider a smoothed version of this func-
tion. Otherwise, the second derivative will collapse to 0 everywhere and will not follow the theo-
retical Dirac delta function2. Many modified ReLU activation functions exist, like Leaky ReLU,
ELU, CELU etc.

x

y

(a) ReLU

x

y

(b) Leaky ReLU

x

y

(c) ELU

x

y

(d) CELU

Figure 2.3: Visualization of various activation functions and their derivatives.

2.1.3 Universal Approximation Theorem

To understand the expressiveness of neural networks, we highlight that specific neural network
configurations can provably approximate any continuous function on compact domain.

Theorem 2.1. Let X ⊆ Rp be compact and f : X → Rq continuous. Then for every ε >

0, there is a MLP of depth 2 with continuous, nonpolynomial activation function, and learned
function fϑ such that:

‖f(x)− fϑ(x)‖ ≤ ε,

for all x ∈ X .

Proof. An overview of many variations of universal approximation (including Theorem 2.1) and
their corresponding proofs is given by Pinkus [38].

Remark. The hidden layer of the neural network can be arbitrarily large.
2Which actually is a distribution or generalized function.
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2.2 OptimizationMethods

However, in practice many networks do not increase the width of the individual hidden lay-
ers by much. Instead, the rise of Deep Learning has shown that a deep neural network can be
particularly effective. Kidger and Lyons [25] have recently proven universal approximation for a
much wider set of narrow yet deep networks. They even consider almost nowhere differentiable
activation functions.

Theorem 2.2. Let X ⊆ Rp be compact and f : X → Rq continuous. Let σ : R → R be
a nonaffine, continuous activation function which is continuously differentiable with nonzero
derivative at at least one point. Then for every ε > 0, there is a MLP of arbitrary depth, with
limited width hidden layers, and learned function fϑ such that:

‖f(x)− fϑ(x)‖ ≤ ε,

for all x ∈ X .

Proof. See [25].

But how do neural networks efficiently learn in practice? This is what we discuss next.

2.2 OptimizationMethods

To minimize the error between the neural network output and the target data we need an opti-
mization algorithm that can minimize the Cost, i.e.:

argmin
ϑ

J (ϑ) (2.6)

At the time of this writing, Adam [28] is the standard baseline optimizer in use for learning with
neural networks. It is a variant of Stochastic Gradient Descent (SGD) and will be used in all
experiments to be comparable with previous results. We therefore introduce the algorithm incre-
mentally, starting with Gradient Descent and SGD, before explaining Adam in subsection 2.2.3.

2.2.1 Gradient Descent

Gradient descent minimizes the cost function using the following iterative scheme:

ϑ← ϑ− η∇ϑJ (ϑ), (2.7)

where η is the learning rate and∇ϑ is the gradient operator with respect to the parametersϑ. The
algorithm stops when∇ϑJ (ϑ) < ε, for some tolerance ε, or when the training stops after a fixed
iteration count. Various strategies exist for choosing and adjusting η over the course of training.

11



2 Background

We will mostly stick to a small constant or learning rate scheduling. In learning rate scheduling
the η is adapted based on a fixed scheduling function s : N→ R. It takes in the current training
step index and returns a learning rate η.
Alternatively, the learning rate canbe improvedvia line search. The theoretic optimum is found

for η ifJ (ϑ− η∇ϑJ (ϑ)) is minimized. But this is infeasible in practice and instead, one has to
sample some possible η and pick the best candidate. Often amore effective strategy is to backtrack
if the learning rate does not decrease the objective function and shrink η repeatedly until it does.
Note that for convex objective functions the number of steps the gradient descent algorithm is

going to take is independent in the dimension of the search space. Its convergence rate is in this
caseO( 1k ), where k is the number of iterations [53, p. 14]. So, no matter how large the problem
gets, the number of training iterations stays the same. However, in practicemany problems are, of
course, not convex. For example, the principal component analysis (PCA), something which we
will discuss in subsection 6.1.2, is a nonconvex problem3, but it provably has only a single global
optimum! High-dimensional problems will often have many saddle points to overcome before
reaching the global optimum. How fast an optimization algorithm can get out of such saddle
points is thus vital. A natural extension is to consider stochastic optimization algorithms.

2.2.2 Stochastic Gradient Descent

Adownside of gradient descent is that it considers the entire dataset. It can therefore be infeasible
to use in practice as the training iteration time increases with the size of the dataset. Instead,
consider only a batch of samples which get randomly chosen from the training sampler. Then,
the gradient of the loss is only computed for this so calledminibatch. We denote this approximate
gradient by ĝ. Again, similar comments on the learning rate apply as in the previous section.

Algorithm 2.1 Stochastic Gradient Descent (SGD)
Require: Initialized parametersϑ, training sampler S .
whileϑ not converged do
{(xi,yi)}mi=1 ∼ S . Sample training data
ĝ ← 1

m∇ϑ
∑m

i=1 L(fϑ(xi),yi) .Gradient of minibatch
ϑ← ϑ− ηĝ .Update

end while

In practice, SGD benefits from being able to escape sharp local minima and invokes a form of
implicit regularization of the parameters [46]. Many alternative formulations have been developed
to accelerate the convergence of the learning procedure. Including adding Nesterov Momentum
[51], using AdaGrad [12], RMSProp [50], or an approximate second-order method like L-BFGS

3Finding the smallest and largest eigenvalues of the PCA, however, is again a convex optimization problem.
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[31]. The next algorithm combines some of the benefits of the aforementioned first-order opti-
mizationmethods and has established itself as a baseline formany tasks. However, most optimiza-
tionmethods will work and find similar optima. Fine-tuning of the optimizer parameters and the
learning rate will often play an equally important role in the performance of learning neural net-
works [48].

2.2.3 Adam

Momentum aids in faster convergence as it uses velocity information to guide the trajectory. Sim-
ilar to how a ball rolling down a large bowl will accelerate, these methods use the gradient to com-
pute an additional momentum term that is used instead for updating the parameters. However,
the ball could roll beyond the minimum various times. Nesterov acceleration balances momen-
tum by having the correction factor consider an optimistic parameter update [48]. Adam embeds
the momentum in the computation of the first and second moments separately (herem,v). It
then uses those moments to update the parameters. The bias correction is used to correct for
potential bias in the initial few iterations [17, pp. 301–302].

Algorithm 2.2 Adam [28],with ε = 10−8, β1 = 0.9, β2 = 0.999 by default.
Require: Initialized parametersϑ, training sampler S .
m,v ← 0,0 . Initialize first and second moment
t← 0 .Time step
whileϑ not converged do

t← t+ 1
{(xi,yi)}ni=1 ∼ S . Sample training data
ĝ ← 1

m∇ϑ
∑m

i=1 L(fϑ(xi),yi) .Gradient of minibatch
m← β1m+ (1− β1)ĝ .Update first moment (biased)
v ← β2v + (1− β2)(ĝ � ĝ) .Update second moment (biased)
m̃←m/(1− βt

1) . Bias corrected
ṽ ← v/(1− βt

2) . Bias corrected
ϑ← ϑ− η m̃

ε+
√
ṽ

.Update
end while

The initial proof ofAdam’s convergence rate given in [28]was shown tobe incorrect [43]. There
exist hyperparameter configurations and problems whereby Adam does not converge. However,
in practice these scenarios rarely occur. Nonetheless, this led to an emergence ofmany proofswith
stricter assumptions ormodified algorithmswith correct convergence bounds [11]. Modern alter-
natives include AdamW [33] and AdaBelief [57] but we do not consider them to better compare
against existing results.
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2.3 Algorithmic Differentiation

In this section, we describe the fundamental operations of Algorithmic Differentiation (AD). It
has become the standard technique for obtaining derivative information as it is both efficient and
accurate (up tomachineprecision). Compare this tofinite-difference schemeswhich incur round-
off and truncation error. In addition, the computational complexity scales with the number of
inputs for finite-differences which for machine learning is infeasible to consider. Symbolic differ-
entiation, on the other end of the spectrum, is accurate, however, suffers from an explosion of the
expression length during the elaboration phase of e.g., the product rule. Instead, AD makes use
of the chain rule to break up the computation of the derivative into elemental functions whose
derivatives are known. It leverages the compiler and language features, like operator overload-
ing, to effectively find derivatives automatically. We first discuss the Jacobian-Vector Product in
subsection 2.3.1, where we apply tangent mode (or forward mode) AD, before presenting the
Vector-Jacobian Product in subsection 2.3.2 which uses adjoint mode (or reverse mode) AD.

2.3.1 Jacobian-Vector Product

Any computer program representing a function can be split up into elementary functions that
build up a computationalDirected Acyclic Graph (DAG). This Single Assignment Code (SAC) is
then used to obtain the local derivatives of the elementary functions.

Example 2.3.1. Let f : R2 → R2,

f(x) = f(x0, x1) = (sin(x0 · x1) + x1, sin(x0 · x1)− exp(x0))

v0

v1

v2 v3 v6

v5

v4

a

b

c

d

e f

g

h

(a)DAG

v0 = x0

v1 = x1

v2 = v0 · v1
v3 = sin(v2)
v4 = exp(v0)
v5 = v3 + v1

v6 = v3 − v4

y = (v5, v6)

(b) SAC

a = v1

b = exp(v0)
c = v0

d = 1

e = cos(v2)
f = 1

g = 1

h = −1

(c) Local derivatives

Figure 2.4: AD internals of Example 2.3.1.
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2.3 Algorithmic Differentiation

The Jacobian J can be computed by applying the chain rule of differentiation. For the example
we get:

J =

(
∂v5
∂v0

∂v5
∂v1

∂v6
∂v0

∂v6
∂v1

)
=

(
a · e · g d

b · h+ a · c · f c · e · f

)
=

(
v1 cos(v2) 1

− exp(v0) + v1v0 v0 cos(v2)

)
.

Implementations of tangent mode often extend objects to have a corresponding local derivative
entry for every variable, commonly referred to as AD by dual numbers. This is, however, slightly
misleading because the output value of an operation never depends on the input derivative 4.

Example 2.3.2. Consider the MLP described in Example 2.1.1.

(x0, 1)

(x1, 0)

(x2, 0)

(ŷ, ∂ŷ
∂x0

)

input
layer

hidden layer

output
layer

Figure 2.5: Computing the directional derivative with vector x(1) = e0 in tangent mode AD.

Tangent AD yields directional derivatives by seeding the local derivative entry of the input value
and propagating this derivative value throughout the computation. Seeding refers to the process
of setting the local derivative entry to 1 for the variable we wish to differentiate with respect to.
Example 2.3.2 shows an MLP being seeded with e0 = (1, 0, . . .)T , i.e. the derivative entry of
the first node of the input layer is activated. The derivative with respect to x0 is thus found. The
complete Jacobian is now found by n0 executions of the Jacobian-Vector Product (JVP) seeded
with the Cartesian basis vectors e0, e1, . . . , en0 . Note that, despite its name, we do not have to
materialize the Jacobian for a JVP. Itsmemory usage is thus only two times the original (for storing
the derivative entries). The computational complexity of tangent AD, however, scales with the
number of input variables, here n0. For dense neural networks optimized with a loss function
we usually have many input parameters but few output variables (often only one for the final
4The dual number system, of course, deals with this by taking ε2 = 0, but when implementing the derivatives for
elementary functions, the programming language will not guard you from using input derivative values in the
computation of the output value.
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2 Background

loss value). Tangent AD is thus a very bad choice in this case and machine learning with neural
networks only started to see practical results after considering adjointAD,whichwe consider next.

2.3.2 Vector-Jacobian Product

The work-horse in optimizing neural networks is adjoint AD. This is also commonly known as
backpropagation. In addition, finding the sensitivities of an option pricing model with respect to
its many parameters can be achieved with a single execution of adjoint AD.

Tape based

In operator overloading based implementations the graph is stored in a contiguous data structure
called the tape. Consider again example 2.3.1. During tangent AD the presented graph is never
explicitly build up as the propagation of the dual numbers is sufficient. However, if we want to
start taking the derivatives at the output we must store the intermediate computations. This is
where the tape kicks in: At runtime, the overloaded functions call the adjoint AD tool to store its
intermediate variables in the tape. We thus first run through the entire function of interest, called
the primal section. Then, we seed the output value for which we wish to find the derivatives with
respect to all inputs to. Finally, the programflow is reversed and the local adjoints are computed in
the reversed section, i.e. the backpropagation phase. To get ∂y0

∂x0
in example 2.3.1, we must seed y0

to 1 and y1 to 0 after the primal section. Then the adjoint x0(1) will store the result. In addition,
with this seed we get the result of ∂y0

∂x1
stored in x0(1) without any extra computation. To find the

entire Jacobian it thus remains to seed with y = e1 and perform the computation once more.
The computational cost of adjoint AD therefore scales with the size of the output. Since many
domains have problems with many more inputs than outputs this method is highly desirable.
However, this comes at a cost of significantly increased memory consumption. In C++, expres-
sion templates are used at compile time to collapse intermediate computations that would need
to be stored, resulting in decreased memory usage. This is not an option in interpreted languages
where code generation is more common.

Code generation

AD by code generation takes the ideas presented in the tape based approach and performs them
explicitly instead of relying on runtime data structure to capture the program execution. If code
generation is to be performed at compile time, it requires a parser to capture the operations and
control flow of the program. Once the structure is captured in an AST the corresponding deriva-
tive functions can be generated. It requires, of course, that the programmer specifies which func-
tions need a corresponding derivative. Code generation can be done for tangentAD, but provides
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little to no benefit over operator overloadedmethods since no intermediate computations need to
be stored. The code generator thus just has to insert the corresponding tangent code before the
corresponding operation. The compiled code will therefore often be very similar for tangent AD.
However, in adjoint AD intermediate computations that are required for the computation of the
adjoint must be stored somehow. A common approach used in code generators like Enzyme or
Tapenade [18] is to push the intermediate values onto a local stack.

v0 = x0

v1 = x1

v2 = v0 · v1
v3 = sin(v2)
v4 = exp(v0)
v5 = v3 + v1

v6 = v3 − v4

y0 = v5

y1 = v6

(a) Primal section ↓

x0(1)+ = v0(1)

x1(1)+ = v1(1)

v0(1)+ = a · v2(1)
v1(1)+ = c · v2(1)
v2(1)+ = e · v3(1)
v0(1)+ = b · v4(1)
v3(1)+ = g · v5(1)
v1(1)+ = d · v5(1)
v3(1)+ = f · v6(1)
v4(1)+ = h · v6(1)
v5(1) = y0(1)

v6(1) = y1(1)

(b) Reversed section ↑

a =
∂v2
∂v0

b =
∂v2
∂v1

c =
∂v3
∂v2

d =
∂v4
∂v0

e =
∂v4
∂v3

f =
∂v5
∂v1

g =
∂v6
∂v3

h =
∂v6
∂v4

(c) Local derivatives

Figure 2.6: Adjoint AD internals of Example 2.3.1. We assume all local adjoints (·)(1) are initialized to 0.

The theory of efficient adjoint computation and the optimal balance between memory con-
sumption and run time performance is a wide ranging subject. We will not consider it in more
detail. The interested reader may look into [36] for a general discussion and [2] for a machine
learning perspective on AD instead.

2.4 JAX

JAX [5] is an AD tool build in Python that uses both operator overloading and code generation
techniques. Typical AD code generators, e.g., Tapenade [18], parse the code at compile time and
generate the corresponding derivative code before executing the program. Instead, JAX builds at
runtime the representation of the code via operator overloading facilities from Python. It then
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uses a form of Just-In-Time (JIT) compilation to optimize the code during runtime and to gener-
ate the required derivative code. It allows JAX to target various accelerators like the GPU or TPU
without any change in the user code. However, it requires the program to be written in a func-
tional subset of Python5, replacingmany core control flowprimitiveswith custom functions, e.g.,
jax.scan, jax.while_loop, jax.cond, jax.vmap. These primitives allow JAX to apply automatic
vectorization throughout the code. Take for example jax.vmap: It replaces a typical for loop and
is used to directly apply a function over a batch of data. Or jax.scan, which furthermore threads
the intermediate values throughout the computation.

import numpy as np

import jax

import jax.numpy as jnp

arr = np.array ([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

# NumPy

def sum_and_max(arr):

total = 0

max_values = []

for subarr in arr:

total += np.sum(subarr)

max_values.append(np.max(subarr ))

return total , max_values

final , out = sum_and_max(arr)

# JAX

def scan_fn(carry , x):

return carry + jnp.sum(x), jnp.max(x)

final , out = jax.scan(scan_fn , jnp.array (0), arr)

Figure 2.7: Examples of JAX specific control flow primitives.

Its efficient implementation of tensors based on a NumPy like interface, general purpose AD
facilities, and its capabilities for auto-vectorization to various accelerators is the reason that we

5Regular Python code can still be used but results in significantly longer compile times since for loops are unrolled
and individually optimized by XLA. On the other hand, jax.scan is compiled down to a single primitive call.
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2.4 JAX

chose to implement the presented ideas in JAX. The JVP and VJP are fundamental primitives
in JAX and can be called through jax.jvp and jax.vjp, respectively. We will encounter these
operations throughout the remaining sections and will postpone the discussion to the point of
first use (section 6.1).
However, JAX has its sharp bits. Besides the restriction to pure functional operations, the

biggest limitation is the restricted use of dynamic arrays in JIT compiled contexts. This is in
large part due to the limitations of XLA, the backend compiler used by JAX. For more details,
we recommend the reader to look into the official documentation which includes many detailed
explanations of its inner workings.
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3 Models for Option Pricing

“The stock market is filled with individuals who know the price of everything, but
the value of nothing.”

—Philip Arthur Fisher, Common Stocks and Uncommon Profits

Practitioners in tradingoptionshave existed longbeforemathematicalmodels of optionprices had
been invented. Already in the 17th century, during thefirst tulipmarkets in theNetherlands, itwas
common to deal with put and call options [22]. While the markets back then were ill-regulated,
simple principles and heuristics like the put-call parity were already known to some [52]. It took,
however, many decades to stop forms of windhandel1 before the markets operated profession-
ally. The uncertainty underlying the trades remained unknown for many centuries and is to this
day a challenging problem, especially for more sophisticated pricingmodels. Usingmathematical
models allows one to gain more insight and to assess risk inherent in the trades.
In this chapter, we describe two common option pricing models that will act as the data gener-

ating distribution for learning the surrogate model. We start with one of the first models to ever
be published on this subject by Bachelier in section 3.1, before presenting a stochastic volatility
model of Heston [19] in section 3.2.

3.1 Bachelier

It was Louis Bachelier who in 1900 came upwith a dynamical model that incorporated and could
describe a stochastic process [1]. In short, it is described by:

dSt = µStdt+ σ dWt, (3.1)

where t > 0, µ is the constant drift for the interest rate, σ is the constant volatility, St the
underlying asset price at time t, and dWt describes a Wiener process, i.e. Brownian motion.
We can simplify this formula by considering the forward price.

Definition 3.1. (ForwardPrice)The forwardpriceFt is thediscountedprice, i.e. Ft = Ste
r(T−t),

1Trading on shares and options that one does not possess. It is dutch and literally translates to wind trading, used to
describe the various forms of speculation that occurred during the tulip mania.
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where r is the interest rate and time T the maturity.

Alternatively, when considering the T-forward measureQT , the model simplifies to

dFt = σ dWt
QT , (3.2)

The forwardmeasure results in the drift term to disappear from the SDE as it is incorporated in
the probability measure of the modifiedWiener process. From now on, we will implicitly assume
that any equation dealing with a forward price is considering a forward measure as well.

Definition 3.2 (Wiener process). A stochastic processW = {Wt}t≥0, on the interval [0, T ], is
a Wiener process if it fulfills the following properties:

• W0 = 0.

• Wt −Ws andWv −Wu are independent for all 0 ≤ s < t < u < v ≤ T .

• Wt+s −Ws ∼ N(0, t),

• With probability 1,Wt viewed as a function of t is continuous.

As in the introduction, we consider a European call option on the underlying asset withmatu-
rity at time T and strike price K.

Definition 3.3 (European call option payoff). ν(ST ,K) = (ST −K)+.

Definition 3.4 (Option price). The option price is the expected value of the payoff:

V = E[ν(ST ,K)]

Let VC(Ft,K) denote the price of the European call option at time t for strike K. The call
option price at time t = 0 can be calculated analytically and is:

VC(F0,K) = (F0 −K)Φ(z) + σ
√
Tϕ(z), z =

F0 −K

σ
√
T

, (3.3)

whereϕ,Φ are the PDF andCDFof the standard normal distribution, respectively. Wewill use
the analytic prices for comparison with the prices obtained by the surrogate model. For further
derivations of the Bachelier model, including its characteristic function and PDE description see,
e.g., [49].
The famous model by Black and Scholes is in fact very much related to the model of Bachelier,

using a log-normal distribution instead of the normal distribution [45]. This change often makes
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3.1 Bachelier

sense for options on stock prices since halving the price should be regarded with the same prob-
ability as doubling the price. Nonetheless, in many domains this property does not apply, e.g.
interest rates move up or down 25 basis points, and the Bachelier model is suitable. Particularly in
the regime of negative interest rates Bachelier can be applied without modification which is not
the case for other models [8]. In addition, the volatility term of Bachelier can be considered in
absolute change in Ft while Black and Scholes consider volatility with respect to relative changes
in the price.

Definition 3.5 (Basket). ABasket St ∈ Rm ofm securitiesS[0]
t , S

[1]
t , . . . , S

[m]
t has at time t the

price:

St =
m∑
i=0

ωiS
[i]
t ,

m∑
i=0

ωi = 1,

where ωi is the weight associated with the ith security.

Remark. A Basket option can in many regards be treated like a single asset, making it applicable
to all the defined option pricing models and payoffs. However, it requires care in realizing that the
sum of the underlying (correlated) assets may not follow the distribution of the individual assets.

Basket options are another domain where the Bachelier model is useful since even if the under-
lying asset prices are log-normal distributed, a weighted sum of such assets in general is not log-
normal distributed. We will consider basket models with assets being jointly normal distributed.
As a result, the price of the basket optionwill remainGaussian and the Bacheliermodel computes
suitable prices. In particular, consider a basketwith correlated normally distributed assets that can
be generated from amultivariate normal distribution. Thenwe canmodel the basket optionwith
a correlated Bachelier model form assets:

dFt = σ dWt, (3.4)

where Ft ∈ Rm and dW j
t dW k

t = ρjk with j, k ∈ {1, . . . ,m}. That is, the Wiener process
dW j

t is correlated to the process dW k
t with constant ρjk. For j = k, the correlation is 1. Each

asset j has a volatility σj . So, the constant volatilitiesσ are applied elementwise.
As pointed out byHuge and Savine [21], althoughwe deal withm assets, the basket option price

will turn out to be a nonlinear function of a single dimension. It requires a surrogate model to
perform large dimensionality reduction to uncover and correctly represent this pricing function.
The Greeks can be found through differentiation via AD or analytically. As an example, we

analytically derive the Delta of the call option price:
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∂VC(F0,K)

∂F0
=

∂

∂F0

[
(F0 −K)Φ(z) + σ

√
Tϕ(z)

]
= Φ(z)

∂

∂F0
(F0 −K) + (F0 −K)

∂

∂F0
Φ(z) + σ

√
T

∂

∂F0
ϕ(z)

= Φ(z) +
(F0 −K)ϕ(z)√

2πσ
√
T
− 1√

2π
ϕ(z)

F0 −K

σ
√
T

= Φ(z), z =
F0 −K

σ
√
T

. (3.5)

3.2 Heston

The Bachelier model considers only static volatility. However, during different market regimes,
especially in exceptional scenarios, the volatility can vary drastically. Thus,Heston [19] suggests to
extend the SDE with another stochastic process for the volatility. We get:

dSt = µSt dt+
√
νtSt dWt

S ,

dνt = κ(θ − νt) dt+ ξ
√
νt dWt

ν , (3.6)

where µ is the drift of the underlying asset, ν the instantaneous variance, θ the long run average
variance of the price, κ the rate of mean reversion of νt to θ, and ξ the volatility of the volatility.
TheWiener processWS

t is correlated to Wiener processW ν
t with ρ, i.e. E[dWt

S dWt
ν ] = ρ dt.

While theHestonmodel has in general no analytical solution, for the special case of the European
(call) option with fixed parameters it can be obtained via its characteristic function. The Greeks
can again be computed through AD.
To avoid that the price becomes negative during the simulation, we can consider logarithmic

asset prices. By the application of Itô’s lemma, the adapted price dynamics are:

d(lnSt) = (µ− 1

2
νt) dt+

√
νt dWt

S . (3.7)

A derivation of Itô’s lemma is beyond the scope of this thesis but can be found in any mathe-
matical finance textbook, e.g [16].

3.3 Implementation

To implement the model, a discretization method must be applied. Common methods include
the Euler-Maryuama or the Milstein scheme. We will focus on the former in subsection 3.3.1,
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3.3 Implementation

including discretizations for Bachelier and Heston. Moreover, as we cannot exhaustively sample
the payoffs to obtain the option price, we introduce the Monte Carlo method for estimating the
price in subsection 3.3.2.

3.3.1 Euler-Maryuama

Consider again the general SDE:

dSt = a(S, t) dt+ b(S, t) dWt,

whereWt is a Wiener process and we want to solve it for some time interval [0, T ]. Taking the
integral on both sides from time t to some small time increment∆t, we have:

∫ t+∆t

t
dSτ =

∫ t+∆t

t
a(Sτ , τ) dτ +

∫ t+∆t

t
b(Sτ , τ) dWτ .

Nowwe can approximate the integrals on the right hand side with a basic left endpoint rectan-
gle approximation. For the first term:∫ t+∆t

t
a(Sτ , τ) dτ ≈ a(St, t)

∫ t+∆t

t
dτ = a(St, t)∆t.

And for the second term:∫ t+∆t

t
b(Sτ , τ) dWτ ≈ b(St, t)

∫ t+∆t

t
dWτ = b(St, t)∆Wt,

where∆Wt = Wt+∆t −Wt.

As a result, we obtain the following approximation to the above SDE:

Ŝt+∆t − Ŝt = a(Ŝt, t)∆t+ b(Ŝt, t)∆Wt

were Ŝt denotes an approximate time-discretized price. If, instead of the actual time from [0, T ],
we consider an indexing scheme with ∆t = T

n and i ∈ N such that 0 ≤ i < n, we get the
common definition of Euler-Maryuama.

Definition 3.6. The Euler-Maryuama discretization for the above SDE on time interval [0, T ]
is given by:

Ŝi+1 = Ŝi + a(Ŝi, ti)∆t+ b(Ŝi, ti)∆Wi, (3.8)

where∆Wi = Wti+1 −Wti ,∆t = T
n , i ∈ N s.t. 0 ≤ i < n, and n the number of time steps.
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3 Models for Option Pricing

Remark. By Definition 3.2,∆Wi is normally distributed and independent of i. Therefore,

∆Wi ∼ N(0, ti+1 − ti) = N(0,∆t) =
√
∆tN(0, 1).

This approach is thus reminiscent of the Euler method for discretizing ODEs, except that it
also takes a random value every time step to increment the dynamics.

Bachelier

The Euler-Maryuama discretization of the Bachelier model is is found through direct application
of Definition 3.6 and given by:

Ŝi+1 = Ŝi + σ∆Wi, (3.9)

where σ is the constant volatility and∆Wi ∼ N(0, 1)
√
∆t as before.

For a basket option, we can simply apply this discretization for each asset. Note, however, that
it is required to keep the Wiener process samples correlated. This is achieved in the same manner
as for the Heston model.

Heston

The Euler-Maryuama discretization of the Heston model in Equation 3.6 is given by:

ν̂i+1 = ν̂i + κ(θ − ν̂+i )∆t+ ξ
√
ν̂+i ∆W ν

i (3.10)

Ŝi+1 = Ŝi + µŜt∆t+
√
ν̂+i Ŝi∆WS

i , (3.11)

Considering log-based prices, we get:

ν̂i+1 = ν̂i + κ(θ − ν̂+i )∆t+ ξ
√
ν̂+i ∆W ν

i (3.12)

Ŝi+1 = Ŝi exp((µ−
1

2
ν̂i

+)∆t+
√
ν̂i

+∆WS
i ), (3.13)

where ν̂+i = max(0, ν̂i) is using full truncation of ν̂i to avoid that the volatility becomes neg-
ative. Even if in theory of the continuous case the Feller condition 2κθ > ξ2 guarantees positive
volatilises, this is not ensured once we discretize. Note, however, that this introduces a discon-
tinuity that must be considered when differentiating since limν̂i→0+

∂
∂ν̂i

√
ν̂i = ∞. We discuss

solutions to this problem in chapter 4. To generate the random samples of the Wiener processes
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with correlation ρ we can draw samples from a multivariate normal distribution with covariance

matrixΣ =

[
1 ρ

ρ 1

]
and meanµ = 0.

A multivariate normal distribution can be implemented by sampling from the uncorrelated
standard normal distributions and using the Cholesky decomposition.

Algorithm 3.1Multivariate Normal Distribution
Require: Covariance matrixΣ.
(L,LT )← Chol(Σ) . By Cholesky factorization
Z ∼ N(0, 1) .Draw i.i.d. standard normal samples
X← LZ .Correlated samples
return X

This approach is alwayswell defined as the covariancematrix is symmetric and positive definite.
Furthermore, the samples inX follow the covariance matrixΣ, as:

E[XXT ] = E[(LZ)(LZ)T ]

= E[LZZTLT ]

= LE[ZZT ]LT (by linearity of Expectation)

= LILT = LLT = Σ.

3.3.2 Monte Carlo

Formore exotic options or custommodels the analytic solution will not be available and wemust
resort to simulation using Monte Carlo (MC) methods. For example, the Heston model does
not have an analytical solution for any path-dependent payoff. The option price is found through
simulating many paths of the discretized SDE and averaging over the (discounted) payoffs.

Definition 3.7 (Unbiased Estimate). An unbiased estimate will converge in expectation to the
true value. That is, given estimator F̂ for true value F = Ex∼X [f(x)], it is unbiased if:

E[F̂ ] = F.
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3 Models for Option Pricing

TheMC estimator for expectation F is unbiased:

E[F̂ ] = Ex̂i∼X

[ 1
m

m∑
i=1

f(x̂i)
]

(3.14)

=
1

m

m∑
i=1

Ex̂i∼X [f(x̂i)] (by linearity of Expectation) (3.15)

= E[f(x)] = F. (3.16)

In options pricing, we have an equivalent problem of estimating, e.g., the call option price VC

through aMC estimator:

E[V̂C ] = E
[ 1
m

m∑
i=1

ν(Ŝ
(i)
T ,K)

]
=

1

m

m∑
i=1

E[ν(Ŝ(i)
T ,K)] = E[ν(ST ,K)] = VC . (3.17)

We can now compute unbiased estimates of option prices. It remains to show how to efficiently
compute the Greeks, i.e. the gradient of the price with respect to the parameters.
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4 Pathwise Sensitivities

In this section, we present the way we will sample sensitivity information from the option pric-
ing models presented in chapter 3. Traditionally, computing the Greeks through tangent AD or
finite differences requires, for each parameter, samplingmany paths, taking the average over them
with some discounting applied to come up with an approximation of the option price and the
Greeks. Multiple invocations of the entireMonte Carlo simulation is often rather expensive. The
adjoint AD method can be used to find the gradient with respect to all the input parameters at
once. However, it requires considering all paths at once, leading to severe memory requirements.
Thememory requirements scale with the number of paths and the number of time steps (to store
the intermediate results that are required for the adjoint computation). Instead, what if we could
consider computing the gradient for every path separately and approximate the Greeks by aver-
aging over these pathwise sensitivities? This concept is known by many names, depending on the
context. The pathwise gradient estimator, process derivative [37] in optimization, and in finance,
the pathwise derivative [6], [16, pp. 386–388] or smoking adjoints [15]. In ML, the technique was
popularized through the work of Kingma andWelling [27] on Variational Autoencoders and is re-
ferred to by the reparameterisation trick. Besides its potential computational savings, it gives an
unbiased estimate with overall lower variance compared to other methods. However, it is not
always applicable.

We first describe the concept in general in section 4.1, before stating when it is applicable in
section 4.2. In particular, we will see that one big disadvantage of the pathwise derivative method
is that it does not support discontinuous payoff functions by default. Since these payoffs are a
cornerstone of the option pricing models, we discuss smoothing techniques for discontinuous
payoffs in section 4.3.

4.1 Interchanging the derivative and expectation

In order to take the derivative of the payoff function ν, we first consider the realization of the
random path as an explicit parameter z ∼ Z , where the set Z represents the possible random
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4 Pathwise Sensitivities

vectors. The payoff can be decomposed into a function on f , where f : Θin × Z → Θout

represents the underlying path:
ν(g(θ, z)),

where the input parametersθ ∈ Θin. In the case of Bachelier,θ = (S0,K), f(θ) = ST−K and
ν is (·)+. E.g., S0 ∼ U(90, 110) andK = 100. Alternatively, we can also think of f returning
multiple values that correspond to the parameters of the payoff function in Definition 3.3.
We have unbiased estimates of pathwise derivatives of the payoff, if:

Ez∼Z

[ ∂

∂S0
ν(g(θ, z))

]
=

∂

∂S0
Ez∼Z

[
ν(g(θ, z))

]
(4.1)

If we can interchange the derivative with the expectation as above, it is possible to compute the
derivative for each path individually. Wewill discuss the applicability of themethod in section 4.2.
The derivative of a path can further be broken down using the chain rule:

∂

∂S0
ν(g(θ, z)) =

∂ν(g(θ, z))

∂ST

∂ST

∂S0
(4.2)

We will be using adjoint AD to compute Equation 4.2 automatically. As an example, we pro-
vide the analytic pathwise derivative for the Bachelier model of European call options.

Bachelier

We consider again the Bachelier model. We get for a fixed z ∼ Z and θ ∈ Θin:

∂ν(g(θ, z))

∂FT
=

∂

∂FT
(FT −K)+ = 1FT>K . (4.3)

Note that at FT = K the derivative does not exist, but the event FT = K occurs with proba-
bility 0. As a result, the payoff function is almost surely differentiable with respect to FT .
Furthermore,

FT = F0 +

∫ t

0
σ dWt, 0 ≤ t ≤ T, (by definition of SDE)

So,
∂FT

∂F0
= 1.

Overall the pathwise derivative of the payoff under the Bachelier model is just 1ST>K .
For the basket option, the pathwise derivative payoff for the individual dimensions remains the

same since ∂F
(i)
t

∂F
(j)
0

= 0, for all i 6= j and ∂F
(i)
t

∂F
(i)
0

= 1.
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4.2 Applicability

4.2 Applicability

Themethodof pathwise derivatives is only applicable if certain conditions can be fulfilled. Glasser-
man [16, pp. 393–395] discusses practical sufficient conditions to verify the validity of the pathwise
method. In practice, the deciding criterion is whether the (discontinuous) payoff function ν is
Lipschitz continuous with respect to the parameters, and differentiable almost everywhere.

Definition 4.1. The payoff function ν is Lipschitz continuous, if there exists a real constant
kν ≥ 0 such that for all θ1,θ2 ∈ Θin and z ∼ Z

‖ν(g(θ2, z))− ν(g(θ1, z))‖ ≤ kν‖θ2 − θ1‖, (4.4)

i.e. it adheres to the Lipschitz continuity condition.

If ν is a smooth function of f it is sufficient to consider whether f is Lipschitz continuous.
However, we almost always deal with non-smooth payoff functions like in the next example.

Example 4.2.1. Consider the European call option payoff. We already discussed at Equation 4.3
that the payoff has only one non-differentiable point at ST = K and is thus almost everywhere
differentiable. Furthermore, the payoff is Lipschitz continuous because the (·)+ function is Lip-
schitz continuous:
Lety1, y2 ∈ Θout represent the output of twodifferent paths and assumew.l.o.g. thaty1 ≥ y2,

‖ν(y1)−ν(y2)‖ = ‖(y1)+− (y2)
+‖ =


‖y1 − y2‖, if y1 > 0, y2 > 0

‖y1‖, if y1 > 0, y2 < 0

0, if y1 < 0, y2 < 0

 ≤ ‖y1− y2‖.

Since we are, in addition, interested in second-order pathwise derivative information, we fur-
ther requireν to be twice differentiable almost everywhere and that Definition 4.1 holds forν(1).
To be precise, there exists a real constant kν(1) such that for all θ1,θ2 ∈ Θin and z ∼ Z

‖ν(1)(f(θ2, z))− ν(1)(f(θ1, z))‖ ≤ kν(1)‖θ2 − θ1‖. (4.5)

These conditions can be generalized to higher-order pathwise derivatives by requiring ν to be n
times differentiable almost everywhere and taking the (n− 1)th derivative of f in Equation 4.5.

Example 4.2.2. Again, the European call option payoff, but now considering applicability for
second-order pathwise derivatives. We know thatν(1) is aHeaviside step functionwhich is clearly
not Lipschitz continuous as it is not even continuous. Therefore, Equation 4.1 does not hold.
Without modification, second-order pathwise derivatives are thus not applicable. This turns out
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4 Pathwise Sensitivities

to be almost always the case in options pricing since the European payoff is amongst the simplest
payoffs to be considered. Note that without the Lipschitz condition, we have that ν(1) is differ-
entiable everywhere except at the strike and thus almost everywhere differentiable. However, the
value of the derivative is always 0 whenever it does exist. Almost everywhere differentiable payoff
functions are thus not sufficient. The nature of the Dirac delta is not captured when considering
the pathwise method.

The last example ismotivation to consider techniques tomake the second-orderpathwise deriva-
tives applicable by modifying the payoff functions to be well-behaved. A technique that is often
used in this context is smoothing.

4.3 Smoothing payoff functions

To alleviate the problem of discontinuous payoff functions we consider smoothing the payoff
function. Smoothing functions is frequently done in quantitative finance, however, one must
take care to not introduce large bias into the computation. Many smoothing functions have been
proposed but we consider only sigmoidal smoothing and cubic spline functions. In addition,
for the (·)+ function we could consider one of the differentiable ReLU alternatives described in
subsection 2.1.2. Here we briefly describe and visualize the other two methods.
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Figure 4.1: Smoothing functions for payoff (·)+, where smoothing widthw = 0.05.
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4.3 Smoothing payoff functions

Sigmoidal Smoothing

A general approach for smoothing the discontinuous transition between two functions at posi-
tion p can be achieved through the use of sigmoidal smoothing. We perform smoothing between
function f1 : R→ R and f2 : R→ R via f̃ : R× R2 → R defined as

f̃(x, p, w) = (1− σ(x, p, w))f1(x) + σ(x, p, w)f2(x), σ(x, p, w) =
1

1 + e−
x−p
w

where p is the position to change between the two functions andw the width of the smoothing.

For ν = (·)+, we can first split up the function into

0, x < 0

x, x ≥ 0
. By sigmoidal smoothing we

thus get:
ν̃(x,w) =

x

1 + e−
x
w

.

Cubic Spline Smoothing

We can consider a cubic spline approximation of the (·)+ function as suggested in [23] for use in
the Heston model.

ν̃(x,w) =


0, x < −w

− 1
16w3x

4 + 3
8wx

2 + 1
2x+ 3w

16 , −w ≤ x ≤ w

x, x > w

, (4.6)

wherew is the width of the smoothing.
A visual comparison of the twomethods is given in Figure 4.1. The cubic spline methodmore

closely follows the function, however, the sigmoidal smoothing has the benefit that at x = 0 the
smoothed function is 0, just like the true payoff function. The cubic spline method should be
preferred when smoothing the truncated volatility in the Heston model as the volatility should
never be negative.
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5 Differential Machine Learning

“Data beats algorithms, but better data beats more data.”
—Peter Norvig

Traditional neural network based learning of surrogates considers a dataset of values generated
from the function representing themodelwewish to approximate. However, the referencemodel
often encodes more information than just output values given some input values. In particular,
derivative information can, in many cases, easily be obtained but is often completely neglected.

Figure 5.1: Learning neural network based surrogate models.

Onemethod that does not neglect derivatives is Differential Machine Learning (DML). In the
field of quantitative finance, the concept of DML was first introduced by Huge and Savine [21].

The core idea boils down to using derivative information during training of a neural network. In
options pricing, this added data corresponds to pathwise derivatives of the payoff as discussed in
chapter 4. It thus provides information of the Greeks during the learning process. Considering
derivative information is, however, not new and has been applied in various other fields.
Model distillation of neural networks represents another domain inwhich derivatives are easily

found, yet often not used. After all, the training process of the initial neural network had to
use backpropagation to perform learning. This information could also be used when learning a
smaller neural network that should distill the knowledge of the larger one. In this domain, the idea
is referred to by Sobolev Training [10]. The name is motivated by the mathematical foundation
of Sobolev spaces, which incorporate derivatives into the norm of a vector space. Since the ideas
are more commonly known by Differential Machine Learning in options pricing, we will stick to
it throughout this thesis.

35



5 DifferentialMachine Learning

In this chapter, we present DML for general neural-network based surrogate models. We ex-
plain how many option prices can be computed through random payoff samples in section 5.1.
In section 5.2 we, moreover, consider pathwise derivatives during learning and describe the algo-
rithm. Finally, the need for reducing the variance of the sampling process becomes apparentwhen
training in this pathwise regime. We briefly describe applicable methods for variance reduction in
section 5.3.

5.1 Option prices from payoff samples

Computing an option price for each configuration of the initial parameters by sampling many
payoffs and averaging over them via MC, as described in subsection 3.3.2, is often too costly to
perform in production environments. Instead of throwing away the sampled payoffs after finding
the option price for some initial spot priceS0, couldwe instead reuse the prior generated informa-
tion for predicting the price given other S0 and hence save a large fraction of the computational
cost?

Consider a scenario inwhich the option prices for the initial spot pricesS0 ∈ {100, 101, 103}
have been computed. The price forS0 = 102might already be sufficiently constrained that it can
be found through pure curve fitting of the already computed payoff samples of the other option
price computations. Instead of creating many paths to find the option price given a single initial
state, split up the paths to start with randomly sampled initial states given some input parameter
range. Then regression is applied to fit a curve that best describes the option prices given the entire
parameter range. Figure 5.2 visualizes this method for the toy example. Through the regression
we can price an option givenS0 = 102 even if no samples explicitly were generated for this input.
The major benefit of this approach is thus that learning to predict many prices is achieved at the
cost of just a single large MC sampling across the entire domain of the input parameters. One
simple approach for regression first used in the more difficult setting of American option pricing
and outlined by Longstaff and Schwartz [32], is to apply least-squares regression to fit the curve. As
a result, the method is known as Least-Squares Monte Carlo and can generically be described by:

ϑ∗ = argmin
ϑ

E(θ,z)∼Θin×Z

[
‖ν(f(θ, z))− fϑ(θ)‖22

]
, (5.1)

wherefϑ is the fitted curvewith coefficientsϑ for random input parametersθ ∼ Θin and random
path noise samples z ∼ Z .

Example 5.1.1 (Least squares of quadratic candidate function). Consider fitting a quadratic
function αx2 + βx + γ to the grey points plotted in Figure 5.2. Thus, ϑ = (α, β, γ) and
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Figure 5.2: Individual Monte Carlo pricing (left) vs Least-Squares Monte Carlo (right).

we want to find ϑ∗ which best fits those points. Performing the optimization results in the blue
regression line of the figure.

Equation 5.1 is very reminiscent of Equation 2.1 when we described optimization using neu-
ral networks. In fact, the method is not limited to least-squares regression and we could instead
consider a neural network to perform the regression. By the universal approximation theorem of
neural networks, we can converge to any function if the neural network grows infinitely wide or
deep, as described in subsection 2.1.3. As a result, we can fit the neural network through gradient
based optimization. Furthermore, the following derivation shows that the learned function fϑ

indeed converges to the expectation E[y|x]we seek to approximate. Here y = f(x) = ν(g(x))

and x = (θ, z) are used for convenience.

37



5 DifferentialMachine Learning

RD(ϑ) = E(x,y)∼D

[
L(fϑ(x), y)

]
(5.2)

=

∫∫
L(fϑ(x), y)p(x, y) dx dy (5.3)

=

∫∫
(fϑ(x)− y)2p(x, y) dx dy (5.4)

With the last equation explicitly setting the loss to the squared-error loss. Weminimize the risk
by setting its gradient to 0.

2

∫
(fϑ(x)− y)p(x, y) dy = 0 (5.5)

So, ∫
fϑ(x)p(x, y) dy =

∫
yp(x, y) dy (5.6)

fϑ(x)

∫
p(x, y) dy =

∫
yp(x, y) dy (5.7)

By the law of total probability,

fϑ(x)p(x) =

∫
yp(x, y) dy (5.8)

fϑ(x) =

∫
y
p(x, y)

p(x)
dy (5.9)

By Bayes’ rule,

fϑ(x) =

∫
yp(y|x) dy = E[y|x]. (5.10)

Under the squared error loss, the optimal regression function converges to the mean prediction.
This is a well-known result in ML [4]. However, since we only consider S and not D during
training, the squared error loss of the payoff values can result in overfitting to the training samples
as it heavily weighs outliers.

5.2 Learning with pathwise derivatives

Typically inML, theproblemofoverfitting is addressed through some formof regularization. The
Bayesian perspective highlights that we can view least-squares regression asMaximum-Likelihood
estimation under the assumption ofGaussian noise being present in the output. We are interested
in the posterior:
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5.2 Learning with pathwise derivatives

p(ϑ|x,y, σ2) ∝ p(ϑ,x,y, σ2) (5.11)

∝ p(y|x,ϑ, σ2)p(ϑ) (5.12)

If we do not consider any prior information for the parameters ϑ, i.e. sampling from the uni-
formdistribution, theoptimalϑ can thusbe found throughmaximizing the likelihood. Anequiv-
alent optimization scheme is to minimize the negative log-likelihood [35, Ch. 7.3]:

− log p(y|x,ϑ, σ2) = − log
[ m∏
i=1

N(yi|fϑ(xi), σ2)
]

(5.13)

= −
m∑
i=1

log
[ 1√

2πσ2
exp
(
− 1

2σ2
(yi − fϑ(xi))

2
)]

(5.14)

= −
m∑
i=1

log(
1√
2πσ2

)− 1

2σ2
(yi − fϑ(xi))

2 (5.15)

=

m∑
i=1

log(
√
2πσ2) +

1

2σ2

m∑
i=1

(yi − fϑ(xi))
2 (5.16)

∝ ‖y − fϑ(x)‖22 (5.17)

Which indeed results in the sum of squared errors. If we furthermore consider a Gaussian
prior on theweights and performMaximum-a-Posteriori estimationwe find that this corresponds
to regression using L2 regularization [4, Ch. 3.3]. However, such regularization adds additional
hyperparameters that introduce further bias-variance considerations leading to the well known
bias-variance tradeoff. Instead, consider a modified posterior which depends on the gradient in-
formation∇xy.

p(ϑ|x,y,∇xy, σ
2) ∝ p(y|x,ϑ, σ2)p(∇xy|x,ϑ, σ2) (5.18)

Then the negative log-likelihood results in the differential loss.

Definition 5.1 (Differential Loss). Given inputx, targety, predicted output fϑ(x), differential
target∇xy, and predicted differential∇xfϑ(x), the differential loss is defined by:

‖y − fϑ(x)‖22 + λ‖∇xy −∇xfϑ(x)‖22, (5.19)

where λ ∈ R≥0 is an added balancing factor.
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5 DifferentialMachine Learning

The differential loss thus naturally arises when considering that the parameters ϑ depend on
the target outputsy and differential target outputs∇ywith the assumption ofGaussian noise on
both. This assumption indeed holds for the noise generation used in the option pricing models
of Bachelier and Heston (see chapter 3).
In Sobolev Training the Equation 5.19 is also known as the Sobolev Loss. In this context, Srini-

vas and Fleuret [47] come to the same conclusion by considering Gaussian noise perturbations ε to
the input x and prove the following via the use of a Taylor expansion.

Eε∼N(0,σ2)

[ m∑
i=1

(f(xi + ε)− fϑ(xi + ε))2
]
=

m∑
i=1

(f(xi)− fϑ(xi))
2

+ σ2
m∑
i=1

‖∇xf(xi)−∇xfϑ(xi)‖22

+O(σ4),

where f(x) = y is the target output function. The model thus becomes more robust to Gaus-
sian noise when considering differential data. In addition, it has been shown that the universal
approximation characteristic still holds (with the usual caveats) under this adapted loss [10].

Neural Network

Reference Model

     Neural Network

Input Generator Loss Function    

Figure 5.3: Visualization of Differential Machine Learning for a single sample.

Having established the theoretical justification of the differential loss, we now describe the full
optimization algorithm in the context of option pricing. Consider an options pricing model like
the Bachelier or Heston model as the reference model to be approximated. To generate a target
label yi for xi, we consider the payoff of the path: yi = ν(f(xi)). The pathwise gradient of
the payoff∇xyi = ∇xν(f(xi)) can be obtained as described in chapter 4. To be precise, xi =

(θi, zi)where we only find the gradient with respect to θi since zi is some random initialization
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5.2 Learning with pathwise derivatives

of the noise path. For Bachelier, θi = (Ŝ0, )i while Heston has a path for the volatility and
thus θi = (Ŝ0, ν̂0)i. For learning the neural network surrogate, we use a stochastic gradient-
based optimizer like SGD or Adam (see subsection 2.2.2). It considers a minibatch of samples
{(xi,yi,∇xyi)}mi=1 ∼ S from the reference model in each training iteration. The samples can
either be precomputed or generated on-the-fly during a training iteration. General best practices
for preprocessing the data also applies in this context. We normalize the data samples elementwise
using x̃i = xi−µx

σx
and ỹi =

yi−µy

σx
. For normalizing the differential targets, consider some

element x of xi and y of yi. Then, by the chain rule of differentiation

∂ỹ

∂x̃
=

∂ỹ

∂y

∂y

∂x

∂x

∂x̃
=

σx
σy

∂y

∂x
, (5.20)

where by linearity of the derivative ∂ỹ
∂y = ∂

∂y
(y−µy)

σy
= 1

σy
and ∂x

∂x̃ = ∂
∂x̃(σxx̃ + µx) = σx.

Henceforth, we assume that the data is normalized either upfront or through a normalization
layer in the surrogate model architecture.

For the drawn input samples of the batch, the neural network surrogate model generates pre-
dictions {ŷi}mi=1. Furthermore, by using adjoint AD the pathwise derivatives {∇xŷi}mi=1 can
be computed efficiently. We indicate the gradient with respect to x by ∇x which is internally
implemented through VJPs. The loss L is ‖·‖22. Taking the mean of the minibatch, we get the
mean squared error as our cost function. Figure 5.3 illustrates the entire process described above
on a per sample basis. In addition, Algorithm 5.1 covers all the steps of the method from the
perspective of a minibatch.

Algorithm 5.1 Differential Machine Learning.
Require: The following inputs must all be initialized.

û Surrogate modelN (ϑ)with function fϑ and initial parametersϑ
û Reference model S
û OptimizerG

whileϑ not converged do
{(xi,yi,∇xyi)}mi=1 ∼ S . Sample training data (incl. pathwise derivatives)
ĝ ← 1

m∇ϑ
∑m

i=1 L(fϑ(xi),yi) + λL(∇xfϑ(xi),∇xyi) .Gradient of minibatch
ϑ← G(ϑ, ĝ) .Update

end while
returnN

For option pricingmodels the referencemodelS(Θin,Z)will first sample initialθi ∼ Θin and
zi ∼ Z for each path. The pathwise (derivative) payoff is then computed as described before.
The optimizer G differs from those presented in section 2.2 in that it externalizes the sampling
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5 DifferentialMachine Learning

and gradient calculation. It only is responsible for the surrogate parameter state updating. As
a result, it more closely reflects the actual implementation and allows applying the well known
optimizers in the regime of (Second-Order) Differential Machine Learning.

5.3 Variance Reduction

For an individual training iteration to be insightful, it is vital that the training batch is represen-
tative of at least some portion of the target distribution. Variance reduction techniques for path-
wise derivatives that are commonly applied in options pricing can aid the training process. Many
variance reduction techniques already exist with a good starting point being [16, Ch. 4]. Note,
however, that not all of those methods, are applicable in the pathwise regime, e.g., Importance
Sampling. One simple, yet effective method is that of antithetic paths. We, therefore, briefly de-
scribe the concept of antithetic paths. It is a technique thatwith little effort can reduce the variance
of the payoff sampling process by making the following observation. Often the Wiener process
is simulated using samples Zi ∼ N(0, 1) from a standard normal distribution. Then, we can
further consider using the same negative samples for a second path, i.e. add Z̃i = −Zi at every
time step. If we then average between the resulting payoffs of the two paths we have an antithetic
path.
To understand this approach, consider a simpler example of a uniformly distributed U0 ∼

U(0, 1) in the range [0, 1]. Then, also Ũ0 = 1 − U0 is uniformly distributed. Intuitively, if U0

happens to be a large sample it can be counter-balanced by U1. Furthermore, the mean of the
average of the two remains the same: 1

2(U0 + Ũ0) =
1
2 . Now using an inverse transformation to

a standard normal the same idea remains applicable, whereby 1
2(Zi + Z̃i) = 0. Glasserman [16]

shows that a sufficient condition for a reduction in the variance to occur is given by two random
variablesYi, Ỹi having negative covariance, i.e. Cov

[
Yi, Ỹi

]
< 0. This is the case for the standard

normal and thus variance is reduced for the antithetic paths. Note, however, that this also means
that we require twice the number of paths as before which could have reduced as well. In practice,
antithetic paths are usually still worthwhile.
Many other approaches for reducing the variance exist that are also applicable in the pathwise

regime. For instance, by considering quasi-MCmethods that use non-random sequences instead
of random samples to more efficiently cover the sampling space. Moreover, multi-level MC re-
duces the accuracy of most samples and only requires some samples to have high accuracy. As
a result, this multi-grid scheme can be much more computationally efficient [14]. Alternatively,
improved discretization schemes can also improve the variance. A treatment of these methods in
the context of DML is beyond the scope of this thesis.
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Learning

If first-order derivative information improves the accuracy of the surrogate model, can second-
order information improve it even further? This is the questionwewant to address in this chapter.
However, the full Hessian is often infeasible to obtain and use in each training iteration. There-
fore, we will consider techniques to approximate it using the Hessian-Vector Product (HVP)
which can compute second-order directional derivatives. But, inwhich directions shouldwe sam-
ple HVPs? We explore answering the question using random directions and directions from a
PCA in section 6.1. Furthermore, loss balancing strategies for balancing the loss, differential loss
and second-order differential loss are covered in section 6.3. Finally, we present results compar-
ing vanillaML, DML and Second-Order DML for finding surrogate models of the Bachelier and
Heston model in section 6.4.

6.1 In which directions should we sample?

Computing the full Hessian for during each training iteration is computationally infeasible as it
scales quadratically in the number of training inputs times the number of training outputs. More-
over, the Hessian would have to be computed for both the neural network surrogate model and
the reference model. Instead, we consider sampling second-order directional derivatives through
the use of the Hessian-Vector Product (HVP). Despite its name, we do not have to materialize
the full Hessian and can thus significantly reduce the computational cost. The HVP can be im-
plemented in four distinct ways: JVP-of-JVP, JVP-of-VJP, VJP-of-JVP, and VJP-of-VJP. General
AD knowledge (see section 2.3) tells us that we should prefer the VJP for first-order derivatives
since it scales with the number of output values. Once we compute the second-order directional
derivatives over the Jacobian, the JVP is to be preferred as it requires lessmemory andhas favorable
overhead compared to the VJP which needs to keep track of the intermediate values. As a result,
the JVP-of-VJP is in most cases the preferred method to implement the HVP.
From now on, we must be more careful with what we mean by∇xf(x). Do we use the JVP

or VJP? In which directions do we apply the individual derivatives?
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6 Second-Order DifferentialMachine Learning

Definition 6.1 (Gradient). The gradient is the transpose of the total derivative. For a function
f : Rn → Rm, with input argument x, the gradient at position p = (p1, . . . , pn) is given by:

∇xf(p) =


∂f
∂x1

(p)
∂f
∂x2

(p)
...

∂f
∂xn

(p)

. (6.1)

Remark. We often use∇xf(x). However, the two x incarnations refer to different things. The
bottom one refers to the fact that we take the gradient with respect to the input argument x of f .
The second x is one example input denoting the position we consider to apply the gradient to. This
notation is useful for functions that also depend on other arguments.

We thus compute the gradient∇xf(x) in coordinates using VJPs at positionx applied to the
Cartesian basis vectors e0, e1, . . . , en. This use of the gradient is in agreement with the previous
sections. In this work, we never explicitly use the VJP for directions other than the Cartesian
basis vectors and thus do not give it a unique symbol. On the other hand, we do want to find
directional derivatives through JVPs with directions other than the Cartesian basis vectors. We
adopt the mathematical notation used by JAX [5] since it closely matches the implementation in
code.

Definition 6.2 (JVP). Let f : Rn → Rm. The Jacobian-Vector Product (JVP) is a mapping
from input position x ∈ Rn and tangent vector v ∈ Rn to the directional derivative at x in
direction v:

∂(f)(x,v) = ∂f(x)v = Jv, (6.2)

where ∂f(x) : Rn → Rm is the Jacobian linear map and J ∈ Rm×n the Jacobian.

Remark. Wemake a distinction betweenJ , which is a matrix, and its linear map ∂f(x) to high-
light that the Jacobian does not have to be materialized to compute a JVP.

Again, the JacobianJ couldbe found through applicationof JVPs to the standardbasis vectors.
For comparison, theVJPwould apply the transposed vector on the left side instead, i.e.: vT∂f(x).

Definition 6.3 (HVP). Let f : Rn → R. The Hessian-Vector Product (HVP) is a mapping
from position x ∈ Rn and tangent vector v ∈ Rn to the second-order directional derivative at
x in direction v. In particular, when considering an implementation of the HVP using tangent-
over-adjoint mode, i.e. JVP-of-VJP, we have:

∂(∇xf)(x,v) = ∂∇xf(x)v = Hv, (6.3)

44



6.1 In which directions should we sample?

whereH ∈ Rn×n is the Hessian.

Remark. For HVPs, it is thus sufficient to consider the JVP of the gradient when f has one output.

For the HVP, we only consider functions with one output value since the output of the payoff
function in options pricing is always one-dimensional. As a result, we do not need to consider
seeding the VJP since it is always e0 = (1, ).

6.1.1 Random directions

Afirst naive answer to the question inwhich directions we should sample theHVPs is to consider
randomones. After all, given enough training iterations the entire spacewill be covered eventually.
In particular, the many HVPs of random vectors should in expectation ideally converge to the
full Hessian. This idea has already been explored by Martens, Sutskever, and Swersky [34] in the
context of finding an estimate of the Hessian given a neural network. They consider random
HVPs for optimizing a cost function during learning of a neural network and in the context of
score-matching. We, on the other hand, want to use the generated information as augmented
training data during learning.
They propose to draw random vectors v, satisfying the constraint E[vvT] = I . Then by

linearity we get an unbiased estimator: E
[
∂∇xf(x)vv

T
]
= ∂∇xf(x)E

[
vvT

]
= H . The

outer product can be applied after computation of the HVP. Moreover, they introduce a vari-
ance reduction technique and propose the Curvature-Propagation algorithm. While they show
improved results we will not consider it in the comparative study as it is beyond the scope of this
thesis. Instead, we stick to the former approach.

6.1.2 Principal Component Analysis

Our end goal is, however, not to approximate the Hessian as accurately as possible. We want to
improve the learning convergence rate and final accuracy of the surrogate model. Of course, it is
quite likely that a method that better approximates the Hessian for the second-order derivative
targets will end up in better surrogate model training. But there might be more useful directions
that could be sampled frequently in the initial phases of learning to rapidly find good-enough
surrogates. We thus consider the principal component analysis (PCA) as one potential method
for finding informative directions already early on.
PCA is a dimensionality reduction technique that can capture the directions of largest variance

through its principal components. A simple illustration is provided in Figure 6.1. It applies PCA
to a dataset of Gaussian noise samples that have been shifted and rotated. If we apply PCA to the
differential data, we can find directions with large uncertainty. In particular, we thus want to find
themost important principal components that capture the largest amount of variance in the data.

45



6 Second-Order DifferentialMachine Learning
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Figure 6.1: PCA capturing variance on rotated Gaussian data. In red: first three standard deviations. The
scaled principal components encode directions of maximal variance (Modified from [7]).

The PCA can be implemented using an Eigendecompostion or through the Singular value de-
composition (SVD). The SVD has a direct relationship to the PCA which is considered next.

Definition 6.4 (SVD). The (thin) SVD

A = USV T

decomposes matrixA ∈ Rm×n into the matrixU ∈ Rm×n, S ∈ Rn×n, and V T ∈ Rn×n. U
andV are both unitary matrices representing the left and right singular vectors, each forming an
orthonormal basis. S is a diagonalmatrix representing the singular values from largest to smallest.

Remark. We only consider the thin SVDwhich is equivalent to the full SVD ifm > n, but avoids
computing with the irrelevant columns inU and rows inS (See [35, Ch. 12.2.3]).

Much can be said about the SVD and the useful properties of the decomposition [35, Ch. 12.2].
We only consider it for finding the principal components. Consider the data matrix A to be
mean-centered, i.e. for each data vector, subtract the mean of the data vectors. Then we find the
eigenvectors ofATA, through a diagonalization, to beV .
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6.1 In which directions should we sample?

ATA = (USV T)T(USV T)

= V STUTUSV T

= V STSV T (sinceU is unitary)

= V S2V T.

Since
ATAV = V S2.

As a result, the right singular vectors inV correspond to directions for the principal components.
Furthermore, the eigenvalues S2 = diag(s2) of ATA are proportional to the variance of the
principal components

sσ2 = s2/sum(s2) = s2/
n∑
i

s2i .

We can thus use sσ2 to select principal components that describe a certain percentage of the vari-
ance. The percentage of variance explained by the kv most important principal components is
found by

kv = argmax(cumsum(sσ2) > κ),

where cumsum is the cumulative sumdefined as usual and argmax finds the index of the first occur-
rence where the condition κ is true. For example, if κ = 0.95we select the principal components
describing 95% of the variance.

Finding all the principal components at each iteration of training can be computationally ex-
pensive even with the thin SVD taking O(mn2) time. Alternative implementations that only
need to find the first kv singular values could be much faster. In particular, Krylov subspace iter-
ation methods can be much faster in this context. In addition, the initial starting eigenvectors for
the iteration could be informed by previous training steps for even faster convergence. Otherwise,
PCA could be applied to only every nth iteration. Also, the PCA could be applied on quantized
data since the precise values are not needed to find generally important directions. The use of iter-
ative methods and quantization is beyond the scope of this thesis but highlights that considering
principal components in each iteration can be feasible for larger problems.
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6 Second-Order DifferentialMachine Learning

6.2 Main algorithm

Wenowhave all the necessary components to present themain algorithm for second-orderDML.
A brief outline of the approach was already given in subsection 1.3.1. Figure 1.1 visualizes the
general building blocks. How those pieces fit together will be made precise in this section.
Starting from the DML Algorithm 5.1, we extend the cost function with an additional loss

term for the second-order differential information. As in the justification of the differential loss,
a probabilistic argument can be made to consider the posterior p(ϑ|x,y,∇xy, ∂∇xy, σ

2) de-
pending on the second-order differential information.

p(ϑ|x,y,∇xy, ∂∇xy, σ
2) ∝ p(y|x,ϑ, σ2)p(∇xy|x,ϑ, σ2)p(∂∇xy|x,ϑ, σ2) (6.4)

Then the negative log-likelihood results in the full second-order differential loss, considering the
entire Hessian. As noted before, this formulation is infeasible in most cases and instead we define
the second-order differential loss to depend on HVPs of kv tangent vectors.

Definition 6.5 (Second-Order Differential Loss). Given input x, target y, predicted output
fϑ(x), differential target∇xy, predicted differential∇xfϑ(x), second-order differential target
∂(∇x(fϑ))(x,vk), and predicted second-order differential ∂(∇xf)(x,vk) given tangent vec-
tor vk, the second-order differential loss is defined by:

λ0‖y − fϑ(x)‖22 + λ1‖∇xy −∇xfϑ(x)‖22 (6.5)

+ λ2

kv∑
k=1

‖∂(∇x(fϑ))(x,vk)− ∂(∇xf)(x,vk)‖22, (6.6)

where λ0, λ1, λ2 ∈ R≥0 are parameters for balancing the loss terms, and kv the number of tan-
gent vectors to consider.

The finalmissing piece is to find the tangent vectors for theminibatch. We apply PCA via SVD
to the mean subtracted derivative information {∇xi ỹi}mi=1 and find the principal components
through the right singular vectors of the SVD. In addition, we scale the principal components
using the singular values to give the directions appropriate weight. Then we mean adjust the
vectors to be applicable on the original data. If the training data is already normalized to mean
0 and variance 1, as is commonly suggested, we do not require the steps of subtracting the mean
from the data and mean adjusting the principal components. Normalization for second-order
DML is akin to that of DML except that we also need to normalize the second-order targets.
Consider, as before, some element x of xi and y of yi. Then

48



6.2 Main algorithm

∂2ỹ

∂x̃2
=

∂

∂x̃

(∂ỹ
∂x̃

)
(6.7)

=
∂

∂x

(σx
σy

∂y

∂x

)∂x
∂x̃

(by the chain rule and Equation 5.20) (6.8)

=
σx
σy

∂2y

∂x2
σx (by taking x = x̃σx + µx) (6.9)

We find the kv most important principal components through the cumulative explained vari-
ance. So, we sum up the singular value scores until we reach, e.g., 95% of variance explained.
Finally, we can apply the HVPs on the reference model and compute the predictions, differential

Algorithm 6.1 Second-Order Differential Machine Learning.
Require: The following inputs must all be initialized.

û Surrogate modelN (ϑ)with function fϑ and initial parametersϑ.
û Reference model S .
û OptimizerG.
û hyperparameter κ for selecting principal components. By default, κ = 0.95, i.e. select

the principal components explaining 95% of the variance in the pathwise gradients.
û loss balancing parameters λ0, λ1, λ2.

whileϑ not converged do
{(xi,yi,∇xyi)}mi=1 ∼ S . Sample training data (incl. pathwise derivatives)
µ← { 1

m

∑m
i=1∇xyi} .Mean of pathwise gradients

{∇xi ỹi}mi=1 ← {∇xyi − µ}mi=1 .Mean subtracted data
(U , s,V T)← SVD({∇xi ỹi}mi=1) . Singular Value Decomposition
{ṽk}n0

k=1 ← diag(s)V . Principal components
{vk}n0

k=1 ← {ṽk + µ}n0
k=1 . Principal components (mean adjusted)

sσ2 ← s2/sum(s2) . Scaled s to represent % of variance
kv ← argmax(cumsum(sσ2) > κ) .Take kv most significant principal components
Gradient ĝ of minibatch:

ĝ ← 1

m
∇ϑ

m∑
i=1

[
λ0L(fϑ(xi),yi) + λ1L(∇xfϑ(xi),∇xiyi)

+ λ2

kv∑
k=1

L(∂(∇xfϑ)(xi,vk), ∂(∇xf)(xi,vk))

]

ϑ← G(ϑ, ĝ) .Update surrogate parameters
end while
returnN
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6 Second-Order DifferentialMachine Learning

predictions and second-order differential predictions using the principal components as tangent
vectors. It remains to compute and backpropagate the gradient of the cost function through the
surrogate model for learning to occur. The entire method is described in Algorithm 6.1.

6.3 Loss Balancing

Ideally, the loss balancing parameters are defined implicitly by the algorithm. In DML,Huge and

Savine [21] suggest to treat each sample of the targets and differential targets with equal weight.
Since each training target yi ∈ R has accompanying differential target∇xyi ∈ Rn for xi ∈ Rn,
we get

λ0 =
1

1 + αn
, λ1 =

αn

1 + αn
, (6.10)

where α is a hyperparameter weighing the importance of differential targets for training. By de-
fault, it is just α = 1.

However, this static approach is insufficient for second-order learning. Since we do not com-
pute the entire hessian, it is unclear upfront how many second-order differential targets will be
considered in any particular training iteration. Depending on how many principal components
are needed to account for the desiredpercentage of variance, the number of samples differs. There-
fore, we suggest to use the information provided byPCAandperform adaptive loss balancing. We
start with a generalization of Equation 6.10.

c = 1 + αn+ βn2 (6.11)

λ0 =
1

c
, λ1 =

αn

c
, λ2 =

βn2

c
, (6.12)

where β is a hyperparameter weighing the importance of second-order differential targets. By
default, β = 2kv/n

2 and the loss will thus be informed by the number of principal components
used in the iteration. We end upwithλ2 = 2kv/c and a factor of 2, because the hessianwould be
symmetric. If random directions are to be used, we do not know kv . In this case, the algorithm
can be adapted in such a way that it takesκ as the hyperparameter for the percentage ofn2 vectors
to draw randomly. Note that, so far, we have only considered the number of generated samples
irrespective of their magnitude. This is usually fine, as long as the data has been normalized for
training. However, we implicitly assume that the data is, therefore, close to normally distributed
since we use z-score normalization. If the variance of a minibatch turns out to be much larger,
this could be problematic.
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6.4 Results

6.4 Results

In this section, we evaluate the proposed methods considering two case studies. We first study a
Bachelier model of a multidimensional basket option, before we consider the stochastic volatility
model by Heston.

Surrogate Model

In both scenarios, we use a MLP as the surrogate model (see section 2.1). The MLP has 4 hid-
den layers with width 20 and, uses the CELU activation function, a continuously differentiable
alternative to ReLU (see subsection 2.1.2). The optimizerG is chosen to be Adam with default
settings as in Algorithm 2.2. In addition, we use a cosine one-cycle learning rate schedule with
peak η = 0.1, raising η for 30% of the cycle, starting at η = 4e−3, and finishing with η = 1e−5.

Bachelier

The Bachelier model is described in section 3.1. To be comparable with previous results [21], we
also use a basket of 7 underlying assets. Therefore, we have the model

dFt = σ dWt, (6.13)

where Ft ∈ R7 and dW j
t dW k

t = ρjk. The correlation matrix is generated from a random
covariance matrix. The parameters for the simulation are as follows: The option has maturity
T = 1 (year), initial spot prices F0 are Gaussian distributed and centered at 100, strike price
K = 110, and basket volatility σ = 0.2. In the implementation, all prices are scaled down
by a factor of 100. Furthermore, antithetic paths are optionally used as described in section 5.3.
The weights of the basket assets are sampled by a uniform distribution and scaled to sum up to
1. For the European payoff function, we use sigmoidal smoothing with w = 0.005. European
payoff for the weighted sum is applicable for the basket since the basket price is Gaussian due
to the individual underlying assets being jointly Gaussian distributed. The sampler S uses 8192
samples which get repeatedly reshuffled during the training iterations. We thus want to observe
the performance also given limited available data.
A comparison of the different methods for learning to predict the price of a basket call option

that is modelled by a Bachelier model is given in Figure 6.2. We observe a significant decrease
in the root mean squared error (RMSE) of price predictions when considering differential ML
(0.345 vs 0.123). Second-Order DML further decreases the error (0.089). While standard ML
produces reasonable results for the prices, theGreeks (Delta andGamma) have significantly worse
predictions (0.550 and 97.547). It is to be expected given that the training did not inform the
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6 Second-Order DifferentialMachine Learning

learning about the Greeks. Again, DML halves the RMSE (0.275 and 88.753) whereas second-
order DML improves the RMSE by more than 3.5 times compared toML (0.152 and 74.737).
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0.50 0.75 1.00 1.25 1.50

0.0

0.1

0.2

0.3

0.4

(c) Second-Order Differential ML (PCA)
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Figure 6.2: PriceV given initial spot priceS0 of Bachelier call option basketmodel of 7 dimensions learned
with different surrogate models. Orange represents the analytic solution, blue the predictions.

Moreover, second-order DML using PCA is the only method that qualitatively captures the
Gamma curve (Figure 6.4c). Note, however, that there seems to exist a staircase pattern on the
wings which is reproducible on many runs. The origin of this behaviour is not fully understood.
One hypothesis is that the limited directions seen through the (kv reduced) PCA results in clus-
tering values closer together than they should. Further investigation in this area is warranted. To
ensure that these results were not caused by random fluctuations, we ran every test 30 times to
compute a mean and standard deviation (see Table 6.1–6.3). Second-Order DML consistently
outperformed the other methods. A 50 dimensional case further manifests the improved accu-
racy of these models.
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Figure 6.3: Delta ∂V
∂S0

given initial spot price S0 of Bachelier call option basket model of 7 dimensions
learned with different surrogates. Orange represents the analytic solution, blue the predictions.

A variation of second-order DML using random tangent vectors is also considered. Trying
to apply the technique directly led to no improvements over regular ML. After investigating the
problem, it became clear that the balance between the different loss terms is crucial for efficient
learning to occur.

Table 6.1: RMSE of surrogate models for predicting the price of a Bachelier modelled basket option.

# Assets # Samples Method
StandardML DML 2nd-Order PCA 2nd-Order RNG

7 8192 0.320±0.022 0.123±0.009 0.101±0.016 0.099±0.004
50 16384 0.0131 0.0062 0.0020 −

After many unsatisfactory attempts in trying to incorporate existing loss balancing strategies
including Soft Adept [20], and ReLoBraLo [3], we found that balancing the mean losses using
softmax similar to ReLoBraLo after each iteration provides significant benefits. The extend to
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Table 6.2: RMSE of surrogate models for predicting theDelta of a Bachelier modelled basket option.

# Assets # Samples Method
StandardML DML 2nd-Order PCA 2nd-Order RNG

7 8192 0.532±0.009 0.261±0.025 0.155±0.018 0.231±0.010
50 16384 0.0027 0.0011 0.0007 −

Table 6.3: RMSE of surrogate models for predicting theGamma of a Bachelier modelled basket option.

# Assets # Samples Method
StandardML DML 2nd-Order PCA 2nd-Order RNG

7 8192 97.625±0.33 87.390±2.20 75.54±0.51 87.392±1.31
50 16384 1.9224 1.6090 0.8736 −

which this property is generalizable or is merely a coincidence of the specific problem domain is
still an open problem that we did not solve. Nonetheless, with such an adaptive loss balancing
the price predictions are on par with the PCA approach. The Greeks, on the other hand, remain
worse than that of the PCA version, yet still better or on par with DML. For the above reasons,
we did not consider random directions for the 50 dimensional case.

Heston

The Heston model is described in section 3.2. The option has maturity T = 1 (year), initial
spot prices S0 ∼ U(50, 150) and initial volatility ν0 ∼ U(0.01, 0.1), strike price K = 100,
correlation ρ = −0.3, interest rate r = 0, mean reversion rate κ = 1, ξ = 1, and θ = 0.09.
Normalization as described in section 5.2 is applied during training.
We compare the results of standard ML with DML in Figure 6.6. If we compare the results

to the true targets shown in the test data section of Figure 6.7, we can observe a significant im-
provement in the prediction of the Greeks. Concretely, the RMSE of price predictions drop
from 0.0309 to 0.0162, the predictedDeltas from 0.0581 to 0.0359 and the predicted Vegas from
0.0191 all the way down to 0.0071. However, so far we did not consider second-order DML.
It turns out that we had a lot of trouble to get the approach working using the regular Euler-
Maryuama discretization scheme. After further investigation it became clear that the variance
and kurtosis of the pathwise (derivative) payoff samples are getting very large. While we are aware
of techniques to combat this problem, it would go much beyond the scope of this thesis (see sec-
tion 8.1 for a discussion and potential future directions). Instead, we highlight and visualize the
key problems that need to be addressed for the second-order DML approach to be applicable.
The training data shown in Figure 6.7e already hints at the problem. If we for example generate

213 payoff samples the variance was computed to be around 5.26with a skewness of 342 and kur-
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Figure 6.4: Gamma ∂2V
∂S2

0
given initial spot price S0 of Bachelier call option basket model of 7 dimensions

learned with different surrogates. Orange represents the analytic solution, blue the predictions.
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tosis at 137745. These astronomical numbers are further demonstrated by mean and max values
1024 simulations of 213 paths. If we look at a single training batch, it becomes clear that almost
all information will be uninformative, i.e. 0, and only very rarely we obtain useful information
(see Figure 6.5b). If the samples are informative, then the values usually blow up into the other
direction (like the yellow dot), thereby resulting in a tail heavy distribution (see Figure 6.5a).
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(b) An example training batch for the second-order path-
wise differential information.

Figure 6.5: Most pathwise second-order derivative payoff samples are uninformative for small volatility.

Under these circumstances, learningwill be almost impossible sincemost of the trainingbatches
will be 0, thereby pushing the second-order samples to 0 until the gradient becomes 0. With a
gradient of 0, no parameters will be changed and thus no learning occurs. It highlights the impor-
tance of variance reduction in the context of pathwise derivative computation.
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(a)ML price predictions. (b)DML price predictions.

(c)MLDelta predictions. (d)DMLDelta predictions.

(e)MLVega predictions. (f)DMLVega predictions.

Figure 6.6: Comparison ofML andDML surrogate models for predicting the price and Greeks of the He-
ston model. Bottom axis correspond to initial spot price S0 and initial volatility ν0.
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6 Second-Order DifferentialMachine Learning

(a) Payoff training data. (b) Test set prices

(c) Pathwise Delta training data. (d) Test set Deltas.

(e) Pathwise Vega training data. (f) Test set Vegas.

Figure 6.7: Heston training data (left) and test set with prices and Greeks (right).
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7 RelatedWork

Much work has gone into using neural networks to enhance, augment, or replace many of the
techniques in traditional numerical methods. This section highlights many notable efforts with
no aim to be exhaustive. We point out the key differences to what is proposed in this thesis. It
should give a broad overview of the landscape of neural network based techniques for approxi-
mating (stochastic) differential equations.

Sobolev Training

The concept ofDifferentialML, as introduced byHuge and Savine [21], has already been explained.
In addition,Czarnecki et al. [10] already introduced a similarmethods, referred to as SobolevTrain-
ing, and extended it to other domains such asmodel distillation and classification tasks. However,
second-order derivative information was so not fully considered by the authors. Christodoulou

[9] briefly explored the use of Hessian information but it did not result in better training con-
vergence or accuracy in their experiments. The reason for this behaviour remained largely unex-
plored. Withourproposedmethod,we show that it is possible to successfully embed second-order
derivative data into the learning process.

SDEs as PDEs

Many connections have been established between SDEs and PDEs. As such, the extensive theory
of learning neural networks for solving PDEs could be applied in this setting. However, PDEs
loose the independence property of Monte Carlo paths and instead compute values based on a
particular stencil pattern. Parallelism in PDE solvers is thus notoriously challenging, making such
approaches often infeasible for training in high dimensions. The proposed context is thus usually
preferred, but interesting results can nonetheless be found in the area of applying ML surrogates
to PDEs, e.g. PINNs.

PINNs

Physics-InformedNeural Networks (PINNs) aim to aid the learning process of a neural network
by incorporating physically inspired invariants into the loss function [40, 41, 42]. It is a form of
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7 RelatedWork

soft regularization that, in its most basic form, adds the PDE residual and boundary conditions
to the loss function. Note that gradient information can also aid training in this context, as the
gradient of the PDE residual must be 0 as well [55]. While this method can result in improved
model accuracy, it remains an open problem area as the soft regularization can make optimiza-
tion challenging [29]. Furthermore, the original concept is limited to ODEs/PDEs, but it can be
extended to modeling stochastic processes, as demonstrated in NN-aPC [56].

PI-GANs

PI-GANs take the idea of PINNs and apply it to generative adverserial networks (GANs) tomodel
stochastic processes [54]. It is a data driven training method considering physical constraints.
They focus on generating surrogate sample paths instead ofmean prediction. Of course, once the
sample paths are accurately modelled, mean prediction is possible through standard techniques.
However, GANs are notoriously difficult to train and require significantly more compute com-
pared to regular neural networks. Moreover, the training behaviour in high dimensional settings
has not been thoroughly investigated yet. Initial experiments by Yang, Zhang, and Karniadakis [54]
suggest that training in high dimensions is possible. We view this class of models as a promising
candidate for learning from sample data in domains where a accurate reference model is hard to
come. Since PI-GANs are differentiable, they could be used as a reference model in DML.

Neural Differential Equations

Neural ODEs solve the problem of parameter specification in differential equations by learning
the parameters through an embedded neural network [24]. This idea can be extended to the do-
main of stochastic differential equations (Neural SDEs) [26, 30], allowing for calibration of SDEs
to realworld data. While this is also required for theHestonmodel, this thesiswill not consider the
problem of SDE calibration. Instead, we focus on efficiently obtaining solutions to pre-specified
SDEs. However, as in the case of PI-GANs, Neural SDEs are fully differentiable and could be
used as reference models for training in DML. The combination could establish itself as a pow-
erful technique for learning surrogate models for price predictions given a calibrated and fitted
Neural SDEmodel.

Gaussian Processes

Going beyond neural networks, wemight want to consider Gaussian Processes [35, Ch. 15]. They
have the advantage of directly encoding uncertainty into the estimation. However, the train-
ing and inference time of Gaussian processes can be slow, especially when dealing with high-
dimensional data.
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8 Conclusion

In this thesis, we investigated the use of learning with differential data. We have seen how to use
pathwise data to compute amean prediction. In particular, for option pricing we justified the use
of Least-Squares Monte Carlo, allowing to train prices from pathwise payoff samples. It can be
extended to learning the Greeks through pathwise derivatives given potentially smoothed payoff
functions. If we, furthermore, consider the input data to be perturbed by Gaussian noise, the
need for optimization using derivative information arises naturally. We introduced Differential
Machine Learning as a general method to embed differential targets into the training of neural
network surrogate models. It extends typical learning by predicting pathwise derivative targets
through adjoint AD over the reference and surrogate model. We, moreover, hint at theoretical
justifications for this approach and demonstrate its improved accuracy over standardML.
The central questions underlying this research revolved around getting insight into the effect

second-order differential data could have to the learning process. The infeasible nature of compar-
ing the Hessian at each training iteration opens up a large landscape of approximate techniques
that try to capture the essence of the curvature information through as little HVPs as possible.
Beyond random directions, we propose to use PCA on differential data to find principal compo-
nents of maximal variance. We have experimentally shown the superior accuracy of second-order
DML in pricing a Bachelier modelled basket option. However, second-order DML opens up
many challenges, from dealing with discontinuities in the models, adaptive loss balancing, to the
need for variance reduction. We, therefore, discuss some of the remaining challenges in making
this method applicable to larger applications and look at potential future directions.

8.1 Discussion

The proposed second-order DML method delivers promising results, yet at the same time raises
many new questions. We would like to understand the scaling behaviour of this method in more
detail. The existing models that use a MLP still train in a matter of seconds on the GPU. On this
scale, the added training cost over DML is just a small multiple. If instead more sophisticated
neural network architectures are to be used, it becomes vital to understand the impact on train-
ing iteration speed the proposed methods have. As with any hyperparameter, finding generally
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8 Conclusion

appropriate settings can be challenging. Currently, the default is to consider the principal com-
ponents describing 95% of the variance, i.e. κ = 0.95. It is an arbitrary choice pointing towards
the need for a better understanding of the compression properties of the differential data space in
the context of second-order DML.
On a technical aside, the proposed method raises an interesting challenge to AD. The optimal

choice for theHVPs in the context ofML is almost always taking a forward-over-reverse approach.
However, when using PCA on the differential data, we only find the principal components, i.e.
the directions for the JVPs, after we computed the VJPs. As a result, we first have to materialize
the Jacobian and only then apply the JVP-of-VJP.We thereby perform some computations twice.
Using a reverse-over-reverse method would circumvent this problem as you can seed the adjoint
output vectors after the primal computation has been performed. Nonetheless, the added over-
head and the much higher memory consumption will probably make the forward-over-reverse
method the only option for large neural network surrogate models. We are looking forward to
clever optimizations in this context.
The experimental studies of the Heston model shine a light on the importance of variance re-

duction. Without meaningful training batches, learning will not occur. Considering better dis-
cretization schemes or antithetic paths would be obvious next steps. Moreover, Vibrato Monte
Carlo is an interesting generalization of the pathwise derivative method that could be worth con-
sidering. Giles [13]proposes tomodel the final time step of the discretized SDEpath via aGaussian
distribution. We could then take the gradient with respect to the expectation of this Vibrato path.
It is always differentiable andwould, in addition, allow the use of arbitrary payoff functions with-
out the need for smoothing.

8.2 Future Directions

Besides working on the above mentioned open problems, there exists many promising future av-
enues. The techniques could be used in the context of classification. Also, why should we stop at
second-order derivative information? What about third-order, fourth-order, …, nth-order deriva-
tive information? Does there exist a context inwhich such informationwouldprovidemeaningful
benefits? Is there a generalizable cost-benefit analysis to be found for incorporating the nth-order
derivative information into learning? Furthermore, sampling from the stochastic referencemodel
could be made more efficient with well known quasi-random sequences. But, what if we consid-
ered the already generated derivative information as uncertainties to consider for future sampling
of the reference model? Finally, PCA only considers linear transformations. Would Kernel PCA,
or a non-linear method like the autoencoder help in requiring even fewer directions to sample?
Despite these uncertainties, one thing is clear: The gradient will lead us to the optimal direction!
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A On the code developed

The proposed method are implemented using JAX [5] and the corresponding repository can be
found under: https://github.com/neilkichler/diff-ml.
The specific results presented in this thesis are located in the notebooks directory. In particular,

notebooks/bachelier.ipynb and notebooks/heston.ipynb. In this section, we give a high level,
simplified overview of some of the most important implementation aspects. We assume a basic
understandingof JAXasoutlined in section2.4. Further information canbe found in their official
documentation. In addition, we use the Equinox and Optax library for neural network training.
Equinox is a thin wrapper on top of JAX. It transforms custom classes using eqx.Module into
PyTrees (which JAX knows how to deal with). Optax is an optimization library that, just like the
OptimizerG in our algorithms, can take in a current state of the parameters and some gradients
to produce a new state for the parameters. It is also worth noting that JAX is a functional sub-
set of Python, i.e. it requires explicit state. That also implies that the random state is explicitly
provided for each function. As an example, consider implementing a linear layer as described in
Definition 2.4.

import equinox as eqx

import jax

class Linear(eqx.Module ):

weight: jax.Array

bias: jax.Array

def __init__(self , in_size , out_size , key):

wkey , bkey = jax.random.split(key)

self.weight = jax.random.normal(wkey , (out_size , in_size ))

self.bias = jax.random.normal(bkey , (out_size ,))

def __call__(self , x):

return self.weight @ x + self.bias

Figure A.1: Linear layer in JAX, requiring explicit random state.
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A On the code developed

class MLP(eqx.Module ):

layers: list

def __init__(self , key , activation=jax.nn.relu):

k1, k2, k3, k4 = jax.random.split(key , 4)

self.activation = activation

self.layers = [Linear(3, 4, key=k1),

Linear(4, 4, key=k2),

Linear(4, 4, key=k3),

Linear(4, 1, key=k4)]

def __call__(self , x):

for layer in self.layers:

x = self.activation(layer(x))

return x

Figure A.2: AMLP using Equinox.

The MLP described in Example 2.1.1 could then be implemented as in Figure A.2. Jax only
applies operations to functions with a single output. To operate on a batch of data, which usually
requires a for loop, we can use the vmap function. Consider, for example, the loss function. The
model predicts one output y given x. To apply it over a batch of {xi}mi=1, we then use vmap and
compute the loss elementwise with, e.g., mean_squared_error.

import jax.numpy as jnp

def mean_squared_error(y, pred_y ):

return jnp.mean((y - pred_y) ** 2)

@eqx.filter_jit

def loss_fn(model , x, y):

pred_y = jax.vmap(model)(x)

return mean_squared_error(y, pred_y)

Figure A.3: Loss function.

The DML training loop can now be transcribed almost literally from the algorithm Algo-
rithm 5.1. We first initialize the optimizer by selecting the parameters ϑ to consider. A filter
operation in Equinox simply extracts all the arrays by default as this almost always corresponds
to the learning parameters. Then, n_epochs are performed using the training sampler S , here
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train_ds. We then perform a training step with train_step using the differential loss function
dml_loss_fn to compute the minibatch gradients grads and use the optimizer optim to compute
the parameter updates.

def dml_train(model , train_ds , test_ds , optim , n_epochs ):

@eqx.filter_jit

def train_step(model , opt_state , x, y, dydx):

loss , grads = eqx.filter_value_and_grad(dml_loss_fn )(model , x, y, dydx)

updates , opt_state = optim.update(grads , opt_state)

model = eqx.apply_updates(model , updates)

return model , opt_state , loss

opt_state = optim.init(eqx.filter(model , eqx.is_array ))

for epoch in range(n_epochs ):

for (x, y, dydx) in train_ds:

model , opt_state , loss = train_step(model , opt_state , x, y, dydx)

test_loss = evaluate(model , test_ds)

return model

Figure A.4: DML training loop.

The differential loss function uses loss balancing as specified in Equation 6.10. The model_fn
function canbe viewed asx 7→ (fϑ(x),∇xfϑ(x)), efficiently computing the value and gradient
using reverse-mode AD.

def dml_loss_fn(model , x, y, dydx , alpha =1):

n = x.shape [1]

lambda_0 = 1.0/(1.0 + alpha * n)

beta = (alpha * n)/(1.0 + alpha * n)

model_fn = eqx.filter_value_and_grad(model)

y_pred , dydx_pred = vmap(model_fn )(x)

value_loss = lambda_0 * mean_squared_error(y_pred , y)

grad_loss = lambda_1 * mean_squared_error(dydx_pred , dydx)

loss = value_loss + grad_loss

return loss

Figure A.5: The differential loss function.
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A On the code developed

By specifying a training and test dataset generator (for evaluation) we can already learn using the
following example setup.

key = jax.random.PRNGKey(seed =42)

model = eqx.MLP(key , in_size=x_train.shape[1], out_size="scalar")

optim = optax.adam(learning_rate =0.01)

model = dml_train(model , train_ds , test_ds , optim , n_epochs =100)

Figure A.6: DML training setup.

This already covers almost everything there is to know for DML. We will not outline second-
order DML as it is more involved. Instead, we refer to the online code repository. Finally, we
highlight how the HVP operator ∂∇x(·) maps naturally to concepts in JAX. Consider the fol-
lowing implementation of the HVP.

def hvp(f, primals , tangents ):

return jax.jvp(lambda x: jax.grad(f)(x), primals , tangents )[1]

Figure A.7: Implementation of the HVP in JAX given function f : Rn → R.

As we can see, the∇ operator for the gradient directly maps to the jax.grad function which
is internally implemented using VJPs. The ∂ function corresponds to the JVP and can directly
be implemented using jax.jvp. To applymultiple tangent vectors at once via vectorization, as we
would like to do for computing the HVPs given the principal component vectors, consider the
HessianMatrix Product (HMP). It can be implemented in JAX by the following.

def hmp(f, primals ):

def hvp_(tangents ):

return hvp(f, (primals ,), (tangents , ))

return jax.vmap(hvp_)

Figure A.8: Implementation of the HMP in JAX given function f : Rn → R.

So, we return a new function that could now be applied to a matrix of principal component
vectors given the same input position. With that, we have all the required foundations covered.
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Acronyms

AD Algorithmic Differentiation
AST Abstract Syntax Tree
CDF Cumulative Distribution Function
DAG Directed Acyclic Graph
DML Differential Machine Learning
GPU Graphics Processing Unit
HVP Hessian-Vector Product
JIT Just-In-Time (compilation)
JVP Jacobian-Vector Product
MC Monte Carlo
ML Machine Learning
MLP Multi-Layer Perceptron
PCA Principal component analysis
PDE Partial Differential Equation
PDF Probability Density Function
PINNs Physics-Informed Neural Networks
ReLU Rectified Linear Unit
SAC Single Assignment Code
SDE Stochastic Differential Equation
SGD Stochastic Gradient Descent
SVD Singular value decomposition
TPU Tensor Processing Unit
VJP Vector-Jacobian Product
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Notation

m The batch size or number of samples.
ei The ith Cartesian basis vector.
J The cost function.
D The data distribution.
� Elementwise multiplication.
E[x] The expectation of x.
◦ The function composition operator.
1p The indicator function with value 1 if condition p is true, else 0.
ni The width of the ith layer.
L The loss function.
‖·‖p TheLp norm.
N(µ, σ2) The normal distribution with mean µ and variance σ2.
U(a, b) The uniform distribution in the support range [a, b].
V The true value of the option price.
ν The payoff function.
R The set of real numbers.
θ The reference model parameters.
Φ The standard normal cumulative distribution function.
ϕ The standard normal probability density function.
ϑ The surrogate model parameters.
S The training distribution.
·T The transpose operator.
Wt A sample of the Wiener process at t.
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