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Problem: Uncertainty

Computation of sensitivities (the Greeks) in option
pricing is based on parameters being fixed.
↪→ Uncertainty in parameters not accounted for.

Key Idea

Combine Algorithmic Differentiation (AD) [5] with Re-

laxation techniques (McCormick relaxations [3, 4]).

↪→ Allows reuse of existing generic numerical pro-

grams and evaluates it via operator overloading.

Insights:

• Obtain information over entire intervals [2].

• McCormick relaxations provide much tighter convex

relaxations compared to interval arithmetic.

Examples:

• Convex relaxation of Call Price, ∆,Θ, etc.

• Delta with uncertain S0, r, ξ, κ, etc.

McCormick Relaxations

Relaxations are typically used in deterministic global

optimization to bound non-convex functions [1].
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Technical Setup

Implemented as open-source CUDA C++ libraries:

CuInterval, CuMcCormick, CuTangent.

Combinations thereof result in desired relaxations of

sensitivity information.

© github.com/neilkichler/<cuinterval, cumccormick, cutangent>
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Sample Code

#include <cumccormick/cumccormick.cuh >

#include <cutangent/cutangent.cuh >

...

using T = cu::tangent <cu::mccormick <double >>;

heston ::parameters <T> xs{}; T res[n];

// dummy scenario

xs[i].r = 0.0319; xs[i].tau = 1.0; xs[i].K = 95.0; ...

// specify input bounds and point where to obtain relaxation

value(xs[i].S0) = { .lb = 95.0, .cv = 100.0,

.cc = 100.0, .ub = 105.0 };

// seeding to compute derivative w.r.t. S0 (i.e., Delta)

derivative(xs[i].S0) = 1.0;

heston ::parameters <T> *d_xs; T *d_res;

cudaMalloc (&d_xs , n * sizeof (*xs));

cudaMalloc (&d_res , n * sizeof (*res));

cudaMemcpy(d_xs , xs, n * sizeof (*xs), cudaMemcpyHostToDevice);

your_pricing_kernel <<<n, 1>>>(d_xs , d_res , n); // unaltered

cudaMemcpy(res , d_res , n * sizeof (*res), cudaMemcpyDeviceToHost);

std::cout << "Price & Delta: " << *res << std::endl;

...

Results for Heston Monte Carlo

Scenario A
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Using: T = 1, r = 0.04 T = 3
12, r ∈ [0.0325, 0.045]

K = 100, ρ = −0.7, κ = 6.21, θ = 0.019, ξ = 0.61, v0 = 0.010201

Future Directions

Many opportunities:

• Applicability to other methods for option pricing:
PDEs via finite-differences, semi-closed form, etc.

• Exotic options.

Beyond option pricing:

• Non-convex deterministic global optimization in finance?

• Quant applications for sensitivities of relaxations?
↪→ i.e., using cu::mccormick<cu::tangent<T>>.
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