Second-Order Differential Machine Learning

Neil Kichler

Domain: Surrogate Models

Monte Carlo methods for sampling option pricing models are expensive. Instead:

- Find efficient **neural-network** based **surrogates** for option pricing models.
- Can we go **beyond Differential Machine Learning** as proposed by Huge & Savine [1], using second-order information?

Key Idea

Add second-order differential data to the learning process [2]:

Visualization of Method

- Use PCA via SVD to find meaningful directions.
- Apply Hessian Vector Product on found principal components.
- (optionally) take k_v most important principal components.
- Adaptive loss balancing using singular value information.
- Implementation on the GPU/TPU using JAX.
- Potential parallel, on-the-fly data generation on the CPU with C++ using AD [3] via, e.g., dco/c++.

Algorithm

Require: Initialized...

- Surrogate model $\mathcal{N}(\boldsymbol{\vartheta})$ with parameters $\boldsymbol{\vartheta}$.
- Reference model $\mathcal{S}.$
- Optimizer G.
- hyperparameter κ , for principal components.
- Loss function \mathcal{L} .

Results for Bachelier Basket Option

- loss balancing parameters $\lambda_0, \lambda_1, \lambda_2$.
- 1: while ϑ not converged do
- 2: $\{(\boldsymbol{x}_i, \boldsymbol{y}_i, \nabla_{\boldsymbol{x}} \boldsymbol{y}_i)\}_{i=1}^m \sim \mathcal{S}$ \triangleright Sample training data3: $\boldsymbol{\mu} \leftarrow \{\frac{1}{m} \sum_{i=1}^m \nabla_{\boldsymbol{x}} \boldsymbol{y}_i\}$ \triangleright Mean of pathwise gradients
- 4: $\{\nabla_{\boldsymbol{x}_i} \tilde{\boldsymbol{y}}_i\}_{i=1}^m \leftarrow \{\nabla_{\boldsymbol{x}} \boldsymbol{y}_i \boldsymbol{\mu}\}_{i=1}^m \quad \triangleright \text{ Mean subtracted data}$ 5: $(\boldsymbol{U}, \boldsymbol{s}, \boldsymbol{V}^{\mathsf{T}}) \leftarrow \mathsf{SVD}(\{\nabla_{\boldsymbol{x}_i} \tilde{\boldsymbol{y}}_i\}_{i=1}^m)$
- 6: $\{ ilde{m{v}}_k\}_{k=1}^{n_0} \leftarrow ext{diag}(m{s})m{V}$ \triangleright Principal components
- 7: $\{oldsymbol{v}_k\}_{k=1}^{n_0} \leftarrow \{\widetilde{oldsymbol{v}}_k + oldsymbol{\mu}\}_{k=1}^{n_0}$ > mean adjusted
- 8: $s_{\sigma^2} \leftarrow s^2 / \operatorname{sum}(s^2)$ \triangleright Scaled s to represent % of variance
- 9: $k_{v} \leftarrow \arg \max(\operatorname{cumsum}(s_{\sigma^2}) > \kappa)$
- 10: Gradient \hat{g} of minibatch:

$$\begin{split} \hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\vartheta}} \sum_{i=1}^{m} \Biggl[\lambda_0 \mathcal{L}(f_{\boldsymbol{\vartheta}}(\boldsymbol{x}_i), \boldsymbol{y}_i) + \lambda_1 \mathcal{L}(\nabla_{\boldsymbol{x}} f_{\boldsymbol{\vartheta}}(\boldsymbol{x}_i), \nabla_{\boldsymbol{x}_i} \boldsymbol{y}_i) \\ &+ \lambda_2 \sum_{k=1}^{k_v} \mathcal{L}(\partial_{\boldsymbol{x}}^2(f_{\boldsymbol{\vartheta}})(\boldsymbol{x}_i, \boldsymbol{v}_k), \partial_{\boldsymbol{x}}^2(f)(\boldsymbol{x}_i, \boldsymbol{v}_k)) \Biggr] \\ \boldsymbol{\vartheta} \leftarrow G(\boldsymbol{\vartheta}, \hat{\boldsymbol{g}}) & \triangleright \text{ Update surrogate parameters} \\ \textbf{end while} \end{split}$$

13: return ${\cal N}$

11:

12:

RMSE for 30 runs with 8192 samples, maturity T = 1 year:

Predict	# Dim	Standard ML	Differential ML	2nd-Order PCA	2nd-Order RNG
Price	7	0.320 ± 0.022	0.123 ± 0.009	$\textbf{0.101} \pm \textbf{0.016}$	$\textbf{0.099} \pm \textbf{0.004}$
Delta	7	0.532 ± 0.009	0.261 ± 0.025	0.155 ± 0.018	0.231 ± 0.010
Gamma	7	97.625 ± 0.33	87.390 ± 2.20	75.54 ± 0.51	87.392 ± 1.31

Details

How to balance the loss parameters?

 \Rightarrow Use k_v (most important principal components)

 $c = 1 + \alpha n + \beta n^2$, $\lambda_0 = \frac{1}{c}$, $\lambda_1 = \frac{\alpha n}{c}$, $\lambda_2 = \frac{\beta n^2}{c}$, where e.g., $\alpha = 1$, $\beta = 2k_v/n^2$.

How to deal with pathwise (derivative) payoff discontinuities?

 \Rightarrow Use smoothing, e.g., sigmoidal smoothing.

References:

B. N. Huge and A. Savine. "Differential Machine Learning". *Risk*, 2020.
N. Kichler. "Second-Order Differential ML". MA thesis. RWTH, 2023.
U. Naumann. *The art of differentiating computer programs.* SIAM, 2011.

Tested on baskets with up to 100 assets, resulting in similar improvements.

Future Directions

Poster online:

- More complicated models? (E.g., Heston? \Rightarrow requires variance reduction)
- PCA using Krylov subspace iteration solver
- Alternatives to PCA capturing non-linearities? (e.g., Kernel PCA, Autoencoder)
- Even higher-order differential data?

Contact: kichler@stce.rwth-aachen.de Website: stce.rwth-aachen.de