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Domain: Surrogate Models

Monte Carlo methods for sampling option pricing models are ex-

pensive. Instead:

• Find efficient neural-network based surrogates for option

pricing models.

• Can we go beyond Differential Machine Learning as pro-

posed by Huge & Savine [1], using second-order information?

Key Idea

Add second-order differential data to the learning process [2]:

• Use PCA via SVD to find meaningful directions.

• Apply Hessian Vector Product on found principal components.

• (optionally) take kv most important principal components.

• Adaptive loss balancing using singular value information.

• Implementation on the GPU/TPU using JAX.

• Potential parallel, on-the-fly data generation on the CPU

with C++ using AD [3] via, e.g., dco/c++.

Algorithm

Require: Initialized. . .

• Surrogate model N (ϑ) with parameters ϑ.

• Reference model S.

• Optimizer G.

• hyperparameter κ, for principal components.

• Loss function L.

• loss balancing parameters λ0, λ1, λ2.

1: while ϑ not converged do

2: {(xi,yi,∇xyi)}mi=1 ∼ S ▷ Sample training data

3: µ← { 1m
∑m

i=1∇xyi} ▷ Mean of pathwise gradients

4: {∇xi
ỹi}mi=1← {∇xyi − µ}mi=1 ▷ Mean subtracted data

5: (U , s,V T)← SVD({∇xi
ỹi}mi=1)

6: {ṽk}n0

k=1← diag(s)V ▷ Principal components

7: {vk}n0

k=1← {ṽk + µ}n0

k=1 ▷ mean adjusted

8: sσ2 ← s2/sum(s2) ▷ Scaled s to represent % of variance

9: kv ← argmax(cumsum(sσ2) > κ)

10: Gradient ĝ of minibatch:

ĝ ← 1

m
∇ϑ

m∑
i=1

[
λ0L(fϑ(xi),yi) + λ1L(∇xfϑ(xi),∇xi

yi)

+ λ2

kv∑
k=1

L(∂2
x(fϑ)(xi,vk), ∂

2
x(f )(xi,vk))

]
11: ϑ← G(ϑ, ĝ) ▷ Update surrogate parameters

12: end while

13: return N

Details

How to balance the loss parameters?
⇒Use kv (most important principal components)

c = 1 + αn + βn2, λ0 =
1

c
, λ1 =

αn

c
, λ2 =

βn2

c
,

where e.g., α = 1, β = 2kv/n
2.

How to deal with pathwise (derivative) payoff discontinuities?
⇒Use smoothing, e.g., sigmoidal smoothing.
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Visualization of Method

Results for Bachelier Basket Option

Standard ML Differential ML Second-Order DML

RMSE for 30 runs with 8192 samples, maturity T = 1 year:

Predict # Dim Standard ML Differential ML 2nd-Order PCA 2nd-Order RNG
Price 7 0.320 ± 0.022 0.123 ± 0.009 0.101 ± 0.016 0.099 ± 0.004
Delta 7 0.532 ± 0.009 0.261 ± 0.025 0.155± 0.018 0.231± 0.010

Gamma 7 97.625 ± 0.33 87.390 ± 2.20 75.54± 0.51 87.392 ± 1.31

Tested on baskets with up to 100 assets, resulting in similar improvements.

Future Directions

• More complicated models? (E.g., Heston? ⇒ requires variance reduction)

• PCA using Krylov subspace iteration solver

• Alternatives to PCA capturing non-linearities? (e.g., Kernel PCA, Autoencoder)

• Even higher-order differential data?
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