
Relaxed Differentiation and Differentiation of Relaxations:
Implementation Considerations for the GPU

Neil Kichler∗
RWTH Aachen University

Aachen, Germany
kichler@stce.rwth-aachen.de

Uwe Naumann
RWTH Aachen University

Aachen, Germany
naumann@stce.rwth-aachen.de

Abstract
Derivative information is inherently local. Extending the informa-
tion to a range of values to capture non-local behavior requires
relaxations of Algorithmic Differentation (AD). Interval Arithmetic
can be used to bound the derivatives in a given input range, giving
what could be called relaxed AD.McCormick relaxations can further
tighten those bounds by providing convex and concave under- and
overapproximations, respectively. Use cases include significance
analysis [11], pruning of neural networks [6], and various forms
of optimization [3, 4, 10]. On the flip side, (sub)gradients of relax-
ations provide necessary linearizations of McCormick relaxations
to be used in, e.g., deterministic global optimization. Motivated by
larger-scale analysis and optimization, our aim is to make use of
modern GPUs. Besides enabling massive parallelism, GPUs provide
essential rounded intrinsic operations (e.g., [f,d]add_r[u,n,z,d])
without the additional cost occurred in most CPU architectures for
repeatedly (re-)setting the global rounding mode. However, they
also pose new challenges for an efficient implementation, including
data-layout considerations, efficient seeding, shared memory use,
etc.

We will consider Interval Arithmetic and McCormick relaxations
in combination with Algorithmic Differentiation on GPUs, and re-
port on recent developments. In particular, custom CUDA kernels
are developed that, in combination with C++ operator-overloading,
allow for arbitrary combinations of the above. In combination with
CUDA graphs, the developed libraries can be used in the determin-
istic global optimizer MAiNGO. The corresponding open-source
implementations CuInterval, CuMcCormick, and CuTangent will
be shown, including examples in relevant contexts. We finally show
initial comparisons to existing C++ based tools.

CCS Concepts
• Computing methodologies→ Model verification and vali-
dation; Massively parallel and high-performance simulations; Un-
certainty quantification; • Software and its engineering → Mas-
sively parallel systems; •Mathematics of computing→Math-
ematical software performance; Automatic differentiation;
Interval arithmetic; Nonconvex optimization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DiffProg-PPoPP ’25, March 01–02, 2025, Las Vegas, NV
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Keywords
Algorithmic Differentiation, McCormick Relaxations, GPGPU
ACM Reference Format:
Neil Kichler and UweNaumann. 2024. Relaxed Differentiation andDifferenti-
ation of Relaxations: Implementation Considerations for the GPU. In Proceed-
ings of Workshop on Differentiable Parallel Programming (DiffProg-PPoPP ’25).
ACM, New York, NY, USA, 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Given a function 𝐹 : R𝑛 → R𝑚 represented by a computer program,
the aim in Algorithmic Differentiation (AD) is to reinterpret the
execution in forward/tangent or reverse/adjoint mode to further-
more evaluate (higher-order) derivatives. A similar pattern emerges
when considering the relaxed evaluation of the function 𝐹 in Inter-
val Arithmetic. Now, the input is an interval 𝑋 = [𝑎, 𝑏] = {𝑥 ∈ R |
𝑎 ≤ 𝑥 ≤ 𝑏}. By the fundamental theorem of Interval Arithmetic an
interval function evaluation on 𝑋 will always bound all possible
function evaluations on inputs 𝑥 ∈ 𝑋 , providing proper lower and
upper bounds for the given interval input [9]. The newly developed
C++/CUDA library CuInterval supports and allows overloading of
all fundamental and set-based interval operations of the 2015 IEEE
Standard for Interval Arithmetic [5].

In McCormick relaxations [7], the primitive functions require
in addition a convex and concave relaxation (ideally its envelope)
that with the McCormick composition rule establishes convex and
concave relaxations for the entire function. Let 𝑋 ⊆ R𝑛, 𝑍 ⊆ R
be nonempty convex sets. For a composite function 𝑔 = 𝐹 ◦ 𝑓 ,
where 𝑓 : 𝑋 → 𝑍 and 𝐹 : 𝑍 → R, with known convex relaxations
𝑓 𝑐𝑣 : 𝑋 → R, 𝐹𝑐𝑣 : 𝑍 → R, and concave relaxations 𝑓 𝑐𝑐 : 𝑋 → R,
𝐹𝑐𝑐 : 𝑍 → R, the convex and concave relaxations of 𝑔 can be
computed by

𝑔𝑐𝑣 (𝒙) = 𝐹𝑐𝑣 (mid(𝑓 𝑐𝑣 (𝒙), 𝑓 𝑐𝑐 (𝒙), 𝑧min)), (1)

and
𝑔𝑐𝑐 (𝒙) = 𝐹𝑐𝑐 (mid(𝑓 𝑐 (𝒙), 𝑓 𝑐𝑐 (𝒙), 𝑧max)), (2)

respectively. Here, the mid function returns the middle value of the
three scalar arguments and

𝑧min = argmin
𝑧∈𝑍

𝐹𝑐𝑣 (𝑧),

𝑧max = argmin
𝑧∈𝑍

𝐹𝑐𝑐 (𝑧).

Note that the McCormick composition therefore might result in
nonsmooth functions such that in general subgradients are required.
This is taken care of in AD by extending derivatives of the min, max,
and mid functions in the desired way as in [2, 8]. Most commonly
used primitive functions are implemented in the newly developed
C++/CUDA library CuMcCormick.

https://orcid.org/0009-0009-8901-6714
https://orcid.org/0000-0002-7518-5922
https://www.avt.rwth-aachen.de/cms/AVT/Forschung/Software/~rggn/MAiNGO/?lidx=1
https://github.com/neilkichler/cuinterval
https://github.com/neilkichler/cumccormick
https://github.com/neilkichler/cutangent
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/neilkichler/cuinterval
https://github.com/neilkichler/cumccormick


DiffProg-PPoPP ’25, March 01–02, 2025, Las Vegas, NV Kichler et al.

However, efficient combinations of the above with AD are often
not considered, especially once the target architecture is a highly-
parallel machine like a GPU. The efficient implementation of vector-
mode AD in conjunction with relaxations is of particular interest.
Motivating examples are plentiful and will guide implementation
efforts.

In this work, we consider combinations of the above with a focus
on the combined execution on GPUs. In particular, combinations
of AD and McCormick relaxations as well as Interval Arithmetic
will be developed in C++ via operator overloading and are used as
a testbed for performance evaluations. Furthermore, in dynamic
environments where the computational graph is built up at runtime,
the use of CUDA graphs is employed and analyzed.

2 Preliminary Results
Initial results based on Tangents-of-McCormick are provided in
the below figures. Figure 1 shows the execution of the arbitrarily
chosen function in Equation 3 being written in a single kernel.

𝐹 (𝒙) = −1 +
𝑛∑︁
𝑖=0

cos(𝒙𝑖 − 1)2 + (𝒙𝑖 − 1)3 + (𝒙𝑖 − 1)4 (3)

As in most other domains, the GPU requires a large enough
workload to overcome the initial overhead of CUDA context ini-
tialization, memory transfers, and slower single-core performance.
The benchmarks were performed on a single node of the CLAIX-
2023-ML cluster [1] using 1 upto 96 cores of the two Intel Xeon
8468 Sapphire (2.1 GHz, 48 cores each) CPUs and one H100 for the
GPU scenario.

10-3

10-2

10-1

100

101

102

103

100 101 102 103 104 105

1 core

6 cores

12 cores

24 cores

48 cores

96 cores

GPU

Ti
m

e 
[m

s]

N [#]

Figure 1: Tangent of McCormick evaluation of function with
1 variable, on 1 node @CLAIX-2023-ML [1]. CPU versions
make use of OpenMP and MC++ while the GPU version uses
a single CUDA kernel.

In Figure 2, the Tangents-of-McCormick computation of the
same function is performed on a computational graph, using the
MC++ graph and evaluation on the CPU and comparing it against
the new CUDA graph implementation using CuMcCormick and
CuTangent. While the MC++ graph evaluation might not be the
most efficient possible CPU implementation, Figure 2 undoubtedly
shows a clear opportunity for large-scale evaluations of relaxations

10-2

10-1

100

101

102

103

104

100 101 102 103 104 105

1 core

6 cores

12 cores

24 cores

48 cores

96 cores

GPU

Ti
m

e 
[m

s]

N [#]

Figure 2: McCormick evaluation with CUDA graphs of func-
tion with 1 variable, on 1 node @CLAIX-2023-ML [1]. CPU
versions make use of OpenMP and MC++ graphs, while the
GPU version uses a CUDA graph.

on the GPU with potentially orders of magnitude improved perfor-
mance. The graph evaluation includes the initial creation time of
the computational graph. Larger graph overheads are amortized
by repeated usage - as in deterministic global optimization - but
also point to the need for lower-overhead alternatives in latency
sensitive scenarios.

3 Outlook
Ultimately, next-generation scientific software frameworks should
be open to extension and allow reinterpretation of existing code in
new ways unknown to the original authors. This work highlights
some of the recent developments and challenges one encounters
when trying to combine the flexibility of operator-overloading and
efficiency of CUDA graphs. It should also hopefully give insights
into possible integration of the mentioned relaxations in AD-aware
JIT-compilers and other compiler infrastructure.

References
[1] RWTH Aachen. 2023. CLAIX 2023 hardware overview. https://help.itc.rwth-

aachen.de/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545cf68a/
[2] Markus Beckers, Viktor Mosenkis, and Uwe Naumann. 2012. Adjoint Mode

Computation of Subgradients for McCormick Relaxations. In Recent Advances
in Algorithmic Differentiation, Shaun Forth, Paul Hovland, Eric Phipps, Jean
Utke, and Andrea Walther (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
103–113. https://doi.org/10.1007/978-3-642-30023-3_10

[3] Dominik Bongartz, Jaromił Najman, and Alexander Mitsos. 2020. Deterministic
global optimization of steam cycles using the IAPWS-IF97 model. Optimization
& Engineering 21 (2020), 1095–1131. https://doi.org/10.1007/s11081-020-09502-1

[4] Jens Deussen and Uwe Naumann. 2023. Subdomain separability in global
optimization. Journal of Global Optimization 86, 3 (2023), 573–588. https:
//doi.org/10.1007/s10898-022-01265-6

[5] IEEE. 2015. IEEE Standard for Interval Arithmetic. IEEE Std 1788-2015 (2015),
1–97. https://doi.org/10.1109/IEEESTD.2015.7140721

[6] Neil Kichler, Sher Afghan, and Uwe Naumann. 2024. Towards Sobolev Pruning. In
Proceedings of the Platform for Advanced Scientific Computing Conference (Zurich,
Switzerland) (PASC ’24). Association for Computing Machinery, New York, NY,
USA, Article 1, 11 pages. https://doi.org/10.1145/3659914.3659915

[7] Garth P McCormick. 1976. Computability of global solutions to factorable non-
convex programs: Part I—Convex underestimating problems. Mathematical
programming 10, 1 (1976), 147–175. https://doi.org/10.1007/BF01580665

[8] Alexander Mitsos, Benoit Chachuat, and Paul I Barton. 2009. McCormick-based
relaxations of algorithms. SIAM Journal on Optimization 20, 2 (2009), 573–601.
https://doi.org/10.1137/080717341

https://github.com/neilkichler/cumccormick
https://github.com/neilkichler/cutangent
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545cf68a/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545cf68a/
https://doi.org/10.1007/978-3-642-30023-3_10
https://doi.org/10.1007/s11081-020-09502-1
https://doi.org/10.1007/s10898-022-01265-6
https://doi.org/10.1007/s10898-022-01265-6
https://doi.org/10.1109/IEEESTD.2015.7140721
https://doi.org/10.1145/3659914.3659915
https://doi.org/10.1007/BF01580665
https://doi.org/10.1137/080717341


Relaxed Differentiation and Differentiation of Relaxations: Implementation Considerations for the GPU DiffProg-PPoPP ’25, March 01–02, 2025, Las Vegas, NV

[9] Ramon E. Moore. 1979. Methods and Applications of Interval Analysis. Soci-
ety for Industrial and Applied Mathematics (SIAM). https://doi.org/10.1137/1.
9781611970906

[10] Hermann Schichl and Arnold Neumaier. 2005. Interval analysis on directed
acyclic graphs for global optimization. Journal of Global Optimization 33 (2005),
541–562. https://doi.org/10.1007/s10898-005-0937-x

[11] Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Christos D.
Antonopoulos, Nikolaos Bellas, Spyros Lalis, and Uwe Naumann. 2016. Towards
automatic significance analysis for approximate computing. In Proceedings of the
2016 International Symposium on Code Generation and Optimization (Barcelona,
Spain) (CGO ’16). Association for Computing Machinery, New York, NY, USA,
182–193. https://doi.org/10.1145/2854038.2854058

https://doi.org/10.1137/1.9781611970906
https://doi.org/10.1137/1.9781611970906
https://doi.org/10.1007/s10898-005-0937-x
https://doi.org/10.1145/2854038.2854058

	Abstract
	1 Introduction
	2 Preliminary Results
	3 Outlook
	References

