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Abstract
Derivative information is inherently local. Extending the informa-
tion to a range of values to capture non-local behavior requires
relaxations of Algorithmic Differentation (AD). Interval Arithmetic
can be used to bound the derivatives in a given input range, giving
what could be called relaxed AD.McCormick relaxations can further
tighten those bounds by providing convex and concave under- and
overapproximations, respectively. Use cases include significance
analysis [11], pruning of neural networks [6], and various forms
of optimization [3, 4, 10]. On the flip side, (sub)gradients of relax-
ations provide necessary linearizations of McCormick relaxations
to be used in, e.g., deterministic global optimization. Motivated by
larger-scale analysis and optimization, our aim is to make use of
modern GPUs. Besides enabling massive parallelism, GPUs provide
essential rounded intrinsic operations (e.g., [f,d]add_r[u,n,z,d])
without the additional cost occurred in most CPU architectures for
repeatedly (re-)setting the global rounding mode. However, they
also pose new challenges for an efficient implementation, including
data-layout considerations, efficient seeding, shared memory use,
etc.

We will consider Interval Arithmetic and McCormick relaxations
in combination with Algorithmic Differentiation on GPUs, and re-
port on recent developments. In particular, custom CUDA kernels
are developed that, in combination with C++ operator-overloading,
allow for arbitrary combinations of the above. In combination with
CUDA graphs, the developed libraries can be used in the determin-
istic global optimizer MAiNGO. The corresponding open-source
implementations CuInterval, CuMcCormick, and CuTangent will
be shown, including examples in relevant contexts. We finally show
initial comparisons to existing C++ based tools.

CCS Concepts
• Computing methodologies→ Model verification and vali-
dation; Massively parallel and high-performance simulations; Un-
certainty quantification; • Software and its engineering → Mas-
sively parallel systems; •Mathematics of computing→Math-
ematical software performance; Automatic differentiation;
Interval arithmetic; Nonconvex optimization.
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1 Introduction
Given a function 𝐹 : R𝑛 → R𝑚 represented by a computer program,
the aim in Algorithmic Differentiation (AD) is to reinterpret the
execution in forward/tangent or reverse/adjoint mode to further-
more evaluate (higher-order) derivatives. A similar pattern emerges
when considering the relaxed evaluation of the function 𝐹 in Inter-
val Arithmetic. Now, the input is an interval 𝑋 = [𝑎, 𝑏] = {𝑥 ∈ R |
𝑎 ≤ 𝑥 ≤ 𝑏}. By the fundamental theorem of Interval Arithmetic an
interval function evaluation on 𝑋 will always bound all possible
function evaluations on inputs 𝑥 ∈ 𝑋 , providing proper lower and
upper bounds for the given interval input [9]. The newly developed
C++/CUDA library CuInterval supports and allows overloading of
all fundamental and set-based interval operations of the 2015 IEEE
Standard for Interval Arithmetic [5].

In McCormick relaxations [7], the primitive functions require
in addition a convex and concave relaxation (ideally its envelope)
that with the McCormick composition rule establishes convex and
concave relaxations for the entire function. Let 𝑋 ⊆ R𝑛, 𝑍 ⊆ R
be nonempty convex sets. For a composite function 𝑔 = 𝐹 ◦ 𝑓 ,
where 𝑓 : 𝑋 → 𝑍 and 𝐹 : 𝑍 → R, with known convex relaxations
𝑓 𝑐𝑣 : 𝑋 → R, 𝐹𝑐𝑣 : 𝑍 → R, and concave relaxations 𝑓 𝑐𝑐 : 𝑋 → R,
𝐹𝑐𝑐 : 𝑍 → R, the convex and concave relaxations of 𝑔 can be
computed by

𝑔𝑐𝑣 (𝒙) = 𝐹𝑐𝑣 (mid(𝑓 𝑐𝑣 (𝒙), 𝑓 𝑐𝑐 (𝒙), 𝑧min)), (1)

and
𝑔𝑐𝑐 (𝒙) = 𝐹𝑐𝑐 (mid(𝑓 𝑐 (𝒙), 𝑓 𝑐𝑐 (𝒙), 𝑧max)), (2)

respectively. Here, the mid function returns the middle value of the
three scalar arguments and

𝑧min = argmin
𝑧∈𝑍

𝐹𝑐𝑣 (𝑧),

𝑧max = argmin
𝑧∈𝑍

𝐹𝑐𝑐 (𝑧).

Note that the McCormick composition therefore might result in
nonsmooth functions such that in general subgradients are required.
This is taken care of in AD by extending derivatives of the min, max,
and mid functions in the desired way as in [2, 8]. Most commonly
used primitive functions are implemented in the newly developed
C++/CUDA library CuMcCormick.
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However, efficient combinations of the above with AD are often
not considered, especially once the target architecture is a highly-
parallel machine like a GPU. The efficient implementation of vector-
mode AD in conjunction with relaxations is of particular interest.
Motivating examples are plentiful and will guide implementation
efforts.

In this work, we consider combinations of the above with a focus
on the combined execution on GPUs. In particular, combinations
of AD and McCormick relaxations as well as Interval Arithmetic
will be developed in C++ via operator overloading and are used as
a testbed for performance evaluations. Furthermore, in dynamic
environments where the computational graph is built up at runtime,
the use of CUDA graphs is employed and analyzed.

2 Preliminary Results
Initial results based on Tangents-of-McCormick are provided in
the below figures. Figure 1 shows the execution of the arbitrarily
chosen function in Equation 3 being written in a single kernel.

𝐹 (𝒙) = −1 +
𝑛∑︁
𝑖=0

cos(𝒙𝑖 − 1)2 + (𝒙𝑖 − 1)3 + (𝒙𝑖 − 1)4 (3)

As in most other domains, the GPU requires a large enough
workload to overcome the initial overhead of CUDA context ini-
tialization, memory transfers, and slower single-core performance.
The benchmarks were performed on a single node of the CLAIX-
2023-ML cluster [1] using 1 upto 96 cores of the two Intel Xeon
8468 Sapphire (2.1 GHz, 48 cores each) CPUs and one H100 for the
GPU scenario.
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Figure 1: Tangent of McCormick evaluation of function with
1 variable, on 1 node @CLAIX-2023-ML [1]. CPU versions
make use of OpenMP and MC++ while the GPU version uses
a single CUDA kernel.

In Figure 2, the Tangents-of-McCormick computation of the
same function is performed on a computational graph, using the
MC++ graph and evaluation on the CPU and comparing it against
the new CUDA graph implementation using CuMcCormick and
CuTangent. While the MC++ graph evaluation might not be the
most efficient possible CPU implementation, Figure 2 undoubtedly
shows a clear opportunity for large-scale evaluations of relaxations
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Figure 2: McCormick evaluation with CUDA graphs of func-
tion with 1 variable, on 1 node @CLAIX-2023-ML [1]. CPU
versions make use of OpenMP and MC++ graphs, while the
GPU version uses a CUDA graph.

on the GPU with potentially orders of magnitude improved perfor-
mance. The graph evaluation includes the initial creation time of
the computational graph. Larger graph overheads are amortized
by repeated usage - as in deterministic global optimization - but
also point to the need for lower-overhead alternatives in latency
sensitive scenarios.

3 Outlook
Ultimately, next-generation scientific software frameworks should
be open to extension and allow reinterpretation of existing code in
new ways unknown to the original authors. This work highlights
some of the recent developments and challenges one encounters
when trying to combine the flexibility of operator-overloading and
efficiency of CUDA graphs. It should also hopefully give insights
into possible integration of the mentioned relaxations in AD-aware
JIT-compilers and other compiler infrastructure.
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