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Relaxations

A deterministic way to bound outputs of a function.

Interval Arithmetic:

* Box with lower/upperbound in range

McCormick Relaxations:

* Interval + ) Relaxation of nonconvex,
e Convex/Concave relaxation nonconcave function.
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Why relax?

 uncertainty quantification

verified computing

* constraint propagation/satisfaction

nonconvex optimization:
® subdomain separability [1]
* lower bounding in (deterministic) global optimization [2]

DiffProg 25 Relaxed AD | Neil Kichler



Example: Deterministic Global Optimization



Deterministic Global Optimization

Overview:

Usually done via Branch & Bound
Performs:

® Lower bounding: relaxations.

® Upper bounding: local solver. I

U

Relies heavily on (convex) relaxations
— McCormick relaxations.

subgradients of relaxation computed for
LP solver

High-level illustration
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Deterministic Global Optimization

Lower bounding
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Deterministic Global Optimization

Local solver start at %
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Deterministic Global Optimization

Upper bounding
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Deterministic Global Optimization

0 1 2 3
Domain splitting (Branch)
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Deterministic Global Optimization

0 1 2 3

Determine tighter bounds
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Deterministic Global Optimization
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Why here at DiffProg?

Want to explore the applicability of GPUs for Relaxation <+ AD, besides
e shares a lot of similarities with AD
* one application of diff. programming

e yet another perspective on "reinterpretation"” of
computational programs
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Relaxations + AD



Interval Arithmetic

Computes function bounds:

Replace x € R with X € TR:
IR :={[a,b]|a<bAabeR},
X =[a,b] :={xeR|a<x<b}
— interval extension:
F(X) 2 {f(x) [ x € X}.

Refinement of: sin(cos(xy)y) > 0.5

Fundamental Theorem of Interval Arithmetic

The interval extension F : IR" — IR of f : R" — R is guaranteed to enclose
the range of f over the inputs in X = (Xo, - -+ , Xp), i.e., range(f) C F(X) [3].
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Interval Arithmetic in CUDA
CuInterval: Based on IEEE Std 1788-2015 (Interval Arithmetic Standard [4])

e Implements CUDA kernels for all basic operations:

pos, neg, add, sub, mul, div, recip, sqr, sqrt, fma, pown, pow, rootn, cbrt, exp, exp2, exp10, expm1, log, log2, log1o, log1p, sin, cos, tan , asin,

acos, atan, atanz, sinpi, cospi, sinh, cosh, tanh, asinh, acosh, atanh, sign, ceil, floor, trunc, roundTiesToEven, roundTiesToAway, abs, min, max

e and set-based operations:

inf, sup, mid, wid, rad, mag, mi, equa, subset, interior, disjoint, isEmpty, isEntire, less, strictLess, precedes, strictPrecedes, isMember,

isSingleton, isCommonlnterval, intersection, convexHul, cancelMinus, cancelPlus.

e with outward rounding accounting for intrinsic errors
(e.g., exp(x) w/ 1 ulp error).

We only support bare and set-based (extended) interval operations.
No other flavors (e.g., Kaucher), no decorators, or other aspects of the standard.
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https://github.com/neilkichler/cuinterval

Culnterval: Example

#tinclude <cuinterval/cuinterval.h>
constexpr auto f(auto x, auto y) { return pow(x - 1, 3) - sqr(x) + 4; }

__global__ void kernel(auto *xs, auto *ys, auto *res, int n) {
int i = threadldx.x + blockldx.x * blockDim.x;
if (i <n) { res[i] = f(xs[il, ys[il); }

}

int main() {

constexpr int n = 256;

using T = cu::interval <double>;

T xs[nl, yslnl, res[n], *d_xs, *d_ys, *d_res;

for (int i = o; i < n; i++) { // generate dummy data
double v = i;
xs[i] = {{ .lb = -v, .ub = v }};
yslil = {-v, v}

}

// ... alloc, memcpy host -> device
kernel<<<n, 1>>>(d_xs, d_ys, d_res, n);
// ... memcpy device -> host
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https://github.com/neilkichler/cuinterval

Interval Arithmetic
IA has fundamental shortcomings:

e Dependency problem: partially addressable through symbolic
rewriting. E.g., X> — 4X vs. (X — 2)? — 4 VS. X(X — 4).

e Wrapping Effect: fix would require different arithmetic.

e Limited by hardware intrinsics accuracy and rounding support.
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McCormick Relaxations

Used in lower bounding of 10!
Branch & Bound methods.
Provides: 51
f (x) : Convex relaxation at x

cc : . Or
€ (x) : Concave relaxation at x @

=
f (X) : Interval over X. ;—_-_-_-_-_-;,%(5)
0 1 2 3

McCormick relaxation of f(x) = (x — 1)} — x*> + 4
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McCormick Relaxations from an AD
perspective

Both conceptually start with a computational graph. Then:

McCormick relaxation: AD:
* relaxations of elementary e diff. rules of elementary ops
ops e chain rule

e composition rule
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McCormick Composition Rule

Let X C R",Z C R be nonempty convex sets. For a composite function
g=Fof,wheref:X — ZandF:Z — R, with known convex relaxations
f:X—R,FV:Z— R,and concave relaxations f : X — R, F*“ : Z — R,
the convex and concave relaxations of g can be computed by

g% (x) = F(mid(f(x), f<(x), Zmin)), (1)

and
g (x) = FE(mid(f(x), f(x), Zmax)). (2)

respectively.
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McCormick Relaxations: By Example

/\
/\

X X

() =1

Example: f(x) = (x —1)3 — x2 + 4 with x € [0,3] C R.
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McCormick Relaxations: Constant
_|_

+/ \(
—(-)/ ()

.)3

X X
Fi(0) = 4= () = F(x) = &
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McCormick Relaxations: Concave

falx) = =x* = f{'(x) = =3x,  f{°(x) = —x* (forx < [0.3])
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McCormick Relaxations: Concave

f2(x) = —x* over x € [0, 3]

As f, is concave — compute chord:
xt=0, xV=3
2" (%)
_ _(XU)z + —(XU);L(;L(XL)z)(X _ XU)
= —3X
() =
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McCormick Relaxations: Add

In general:

f:(x) = fi(x) + f2(x)
100 = £/ + ()
550 =900 + £(%)

So:
5/ (X)=-3x+4
0= 44
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McCormick Relaxations; Subtract

As +
fu(x) =x =1
is affine: / \
/ + ()3
(x) =x -1 \
) —x- 1 <y . [0
X X
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McCormick Relaxations; Cubed

Let +
fs(x) = %2,

for x € [-1,2]. /
McCormick Composition " 9
g% (x) = F(mid{f*'(x), f(x), 2"""}) / \
g«“(x) = FE(mid{f<(x),f<(x),z2""}) —(-)? 4 () —1
See Desmos.

X X
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https://www.desmos.com/calculator/dz00lipmkm

McCormick Relaxations: Result

Back to 6
FX)=(x =17+ (=X +4)
for x € [0,3].

Relaxations:

fX) = £ (x) + 5 (%) °| 7
FE() = FE£00 + £5°() Toes 1 i 225
See Desmos. X
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https://www.desmos.com/calculator/jpujv31pp8

CuMcCormick: Example

#tinclude <cumccormick/cumccormick.cuh>
constexpr auto f(auto x, auto y) { return pow(x - 1, 3) - sqr(x) + 4; }

__global__ void kernel(auto *xs, auto *ys, auto *res, int n) {
int i = threadldx.x + blockldx.x * blockDim.x;
if (i <n) { res[i] = f(xs[il, ys[il); }

}

int main() {
constexpr int n = 256;
using T = cu::mccormick<double >;
T xs[nl, ysnl, res[n], *d_xs, *d_ys, *d_res;

for (int i = o; i < n; i++) { // generate dummy data
double v = i;
xs[il = {{ .lb = -v, cv=-v,.cc=v, .ub = v }};
yslil = {-v, vk

}

// ... alloc, memcpy host -> device

kernel<<<n, 1>>>(d_xs, d_ys, d_res, n);

// ... memcpy device -> host
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https://github.com/neilkichler/cumccormick

(Vector) Tangent AD

CuTangent:
e forward-mode operator-overloading based AD
e supports all the C++11 std: :math functions
* supports all functions used in CuInterval/CuMcCormick

— mid, min, max have subgradient extensions
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https://github.com/neilkichler/cutangent
https://github.com/neilkichler/cuinterval
https://github.com/neilkichler/cumccormick

Tangent AD <> McCormick relaxation

mccormick<tangent<T>> tangent<mccormick<T>>

Tangent of McCormick relaxation McCormick relaxation of Tangent
N2 %
Linearized relaxations Nonlocal derivative information
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Tangent of McCormick: Example

#tinclude <cumccormick/cumccormick.cuh>
#tinclude <cutangent/cutangent.cuh>

constexpr auto f(auto x, auto y) { return pow(x - 1, 3) - sqr(x) + 4; }

__global__ void kernel(auto *xs, auto *ys, auto *res, int n) {
int i = threadldx.x + blockldx.x * blockDim.x;
if (i <n){reslil = f(xslil, yslil); }

}

int main() {
constexpr int n = 256;
using T = cu::mccormick<cu:tangent<double>>;
T xs[nl, ysnl, res[n], *d_xs, *d_ys, *d_res;

for (int i = o; i < n; i++) { // generate dummy data
double v = i;
xs[il = {{ .lb = {-v, 0.0}, .cv = {-v, double(i == 0)}, .cc = {v, double(i == 0)}, .ub = {v, 0.0}}};
yslil = {-v, v}; // w.r.t variable o

}

// ... alloc, memcpy host -> device

kernel<<<n, 1>>>(d_xs, d_ys, d_res, n);

// ... memcpy device -> host
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Cuda Graph: Example

Using stream capture:

cumccormick/examples/graph/capture.cu

Using manual construction:

cumccormick/examples/graph/manual.cu
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https://github.com/neilkichler/cumccormick/blob/main/examples/graph/capture.cu
https://github.com/neilkichler/cumccormick/blob/main/examples/graph/manual.cu

Applicability to modern GPUs



Applicability to modern GPUs: Compute

Consider a H100 SM:
* fp32 vs. fp6s: 2:1 ratio (V)

¢ [NT32: address
calculations (v)

e SFU: special functions
can occur frequently (v)

e use of Tensor core (X)
* use of TMA (?)
In general:
e quite unlike matmul
* cannot "tile" computation

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
INT32 FP32 FP32
LD/ LD LD/ LDi
ST ST ST ST

FP84
FP64.
FP64.
FP64.
FP64.
FP84
FP64
FP64. TENSOR CORE
FPe4 4™ GENERATION
FP64
FP64.
FP64
FP64
FP64
FP84
FP64

LD/ LD/ LD LD/
ST ST sT sT SFU
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General GPU considerations

* memory coalescing is vital
* use of (CUDA) shared memory — be aware of bank conflicts
e prefer registers > l1/shared > [2 > dram

* not too many registers to have decent potentially occupancy (although
not as important on H100) -> depends on considered function

 address calculation for tangent seeding not free

e WIP: latency hiding with double buffering of tangent seeding and
computation
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GPU Tangent layout

Many possible shared memory layouts imaginable:

AOS:

template<typename T>
struct tangent { T v; T d; };

mccormick<tangent<T>> x*Xxs;

- unnecessary duplication of value
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GPU Tangents layout

Vector-Tangent:

template<typename T, int N>
struct tangents { T v; T d[N]; };

mccormick<tangents<T>> #*xs;

lb.v 1b.d[e] 1b.d[1]

cv.v cv.d[o] cv.d[2]

cC.Vv cc.d[21] cc.d[2]
ub.d[e] ub.d[1] ub.d[2]

+ natural way to implement it

- bank conflicts

1b.d[30]
cv.d[30]
cc.d[30]
ub.d[30]

1b.d[31]
cv.d[31]
cc.d[31]
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GPU Tangents layout

Tangent layout in shared memory could be:

lb.v cv.v cc.v ub.v
1b.d[e] 1b.d[2] 1b.d[2] ... 1b.d[30] 1b.d[31]
cv.d[e] cv.d[2] cv.d[2] ... cv.d[360] cv.d[31]
cv.d[e] cc.d[2] cc.d[2] ... cc.d[360] cc.d[31]
ub.d[e] ub.d[2] ub.d[2] ... ub.d[36] ub.d[31]

+ reduced bank conflicts
- inter-warp bank conflicts still present

- addressing/data movement more nuanced
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What scaling behavior can we expect?



CuMcCormick vs MC++

1variable, on 1 node @CLAIX-2023-ML [5]
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CuMcCormick CUDA Graph vs MC++ Graph

1variable, on 1 node @CLAIX-2023-ML [5]

104; T AN UL B R |
1 core —+—
103 _ 6 cores —>%<—
F 12 cores —*
L 24 cores —
102 E 48 cores
E 96 cores —O—

GPU —@—

Time [ms]
[
=

[
(en]
o

._.
<
N

10-2 Lo L Lo Lo
100 10! 102 103 10% 10°
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Next steps

0. Further optimizations with async load and TMA swizzle operations
1. Further vector tangent <+ mccormick exploration
2. Explore JIT landscape

3. Higher-order combinations of AD and Relaxations?
(will benefit from differentiable McCormick relaxations [6])

4. Compressed seeding?
5. Adjoint AD <+ Relaxation possible [7]

6. New applications? (e.g., Multistart non-convex optimization)
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Conclusion
Ultimately:

* next-generation scientific software frameworks should be open to
extension and allow reinterpretation of existing code

e challenges for GPUs persist

e CUDA graphs + operator overloading is a flexible solution, but with
pain points.

e opportunities for JIT-compilation?
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More on Interval Arithmetic Rounding

We use the CUDA intrinsic functions which use round-to-nearest-even.
e if halway between two floating point numbers — pick even.
e else — pick nearest.

e Error of 1 ulp in intrinsic results in 2.5 ulp max error for interval lower
& upper bound, i.e. for lower bound: |inf(Fanaytic(X)) — inf(F(X))| < 2.5.

e 8 Scenarios:
* halfway (odd above/below),
* closer to even/odd (left/right),
® exact (even/odd).
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Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):

A
p

|
| l
w 1

- —

1 o [Aulp]
halfway (odd above)
I I
—t—f—————
[Aulp]

—1 o

closer to even (left)

|
-
@)
- —

[Aulp]
halfway (odd below)
I I
—t——t
[Aulp]

—1 0]

closer to even (right)
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Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):

| |
1

o 1 [Aulp]
closer to odd (left)

[Aulp]

I
-
o
- —

exact (even)

| |
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closer to odd (right)
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exact (odd)
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Custom problem for scaling behavior

Consider
F(¥) = cos(xi—1)+(x—1)*+(x;—1)*

Let n = 10000, and compute 1024
McCormick relaxations at the
same time.

N
-05 0 0.5 1 1.5 2

Contour plot for n=2
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Direct kernel

» CPU (96)
~ CUDA HW (0000:1b:00.0 - NVIDIA H100)
Memory usage
Static memory usage
Local Memory Pool
99.7% Kernels

.3% Memory

~ Threads (8)

0S runtime libraries

CUDA API

0
Kemel
Memory

0to 313 MiB

0to272B

0
cud.-| G,

CUDA single kernel launch
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Cuda graphs (stream captured)

100
0
Kemel
Memory

» CPU(96)

~ CUDA HW (0000:2¢:00.0 - NVIDIA H100)

ontext 1

[All Streams] [ NREEA T

94.4% Stream 14 At
5.6% Default stream 7
Memory usage 0 to 939 MiB
ntext 4294967295
Static memory usage 0t0291B
Local Memory Pool

~ Threads (8)

~ W [215711] capture_ndim =

0S runtime libraries ANl

cUbA API [ cossimpninctarie_JeusarJoucasie T Toua. Tcucasien. Jevaoc ] |

CUDA graph capture launch
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Direct kernel vs Cuda graphs

Summary:

* For small test functions (Ackley, Beale, Rosenbrock) Cuda graphs are
6-8 times as slow as a single kernel

Larger test function on par

Memcpy dominates for larger n

Most CPU time wasted waiting for synchronization

Actual kernel launch overhead tiny with CUDA graphs.
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Integration in MAINGO

Approach:

e Create CUDA graph from existing MC++ graph

+

Rest of the solver unchanged

+

Same code for interval arithmetic

Efficiency problems of DAG remain present

MAINGO currently not built for executing many McCormick relaxations
at the same time.
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