

Relaxed Differentiation & Differentiation of Relaxations Implementation considerations for the GPU

Neil Kichler DiffProg '25 Sunday 2nd March, 2025

Relaxations

A deterministic way to bound outputs of a function.

Interval Arithmetic:

• Box with lower/upperbound in range

McCormick Relaxations:

- Interval +
- Convex/Concave relaxation

Relaxation of nonconvex, nonconcave function.

Why relax?

- uncertainty quantification
- verified computing
- constraint propagation/satisfaction
- nonconvex optimization:
 - subdomain separability [1]
 - lower bounding in (deterministic) global optimization [2]

Example: Deterministic Global Optimization

Overview:

- Usually done via Branch & Bound
- Performs:
 - Lower bounding: relaxations.
 - Upper bounding: local solver.
- Relies heavily on (convex) relaxations
 → McCormick relaxations.
- subgradients of relaxation computed for LP solver

High-level illustration

Why here at DiffProg?

Want to explore the applicability of GPUs for Relaxation \leftrightarrow AD, besides

- shares a lot of similarities with AD
- one application of diff. programming
- yet another perspective on "reinterpretation" of computational programs

Outline

- 1. Relaxations + AD
- 2. Example
- 3. Applicability to modern GPUs
- 4. Scaling behavior
- 5. Conclusion

Relaxations + AD

Interval Arithmetic

Computes function bounds:

Replace $x \in \mathbb{R}$ with $X \in \mathbb{IR}$: $\mathbb{IR} := \{[a,b] \mid a \leq b \land a, b \in \overline{\mathbb{R}}\},\$ $X = [a,b] := \{x \in \mathbb{R} \mid a \leq x \leq b\}.$

 \hookrightarrow interval extension:

 $F(X) \supseteq \{f(x) \mid x \in X\}.$

Refinement of: sin(cos(xy)y) > 0.5

Fundamental Theorem of Interval Arithmetic

The interval extension $F : \mathbb{IR}^n \to \mathbb{IR}$ of $f : \mathbb{R}^n \to \mathbb{R}$ is guaranteed to enclose the range of f over the inputs in $X = (X_0, \dots, X_n)$, i.e., range $(f) \subseteq F(X)$ [3].

Interval Arithmetic in CUDA

CuInterval: Based on IEEE Std 1788-2015 (Interval Arithmetic Standard [4])

• Implements CUDA kernels for all basic operations:

pos, neg, add, sub, mul, div, recip, sqr, sqrt, fma, pown, pow, rootn, cbrt, exp, exp2, exp10, expm1, log, log2, log10, log1p, sin, cos, tan , asin, acos, atan, atan2, sinpi, cospi, sinh, cosh, tanh, asinh, acosh, atanh, sign, ceil, floor, trunc, roundTiesToEven, roundTiesToAway, abs, min, max

• and set-based operations:

inf, sup, mid, wid, rad, mag, mi, equa, subset, interior, disjoint, isEmpty, isEntire, less, strictLess, precedes, strictPrecedes, isMember, isSingleton, isCommonInterval, intersection, convexHul, cancelMinus, cancelPlus.

• with outward rounding accounting for intrinsic errors (e.g., exp(x) w/ 1 ulp error).

We only support bare and set-based (extended) interval operations. No other flavors (e.g., Kaucher), no decorators, or other aspects of the standard.

CuInterval: Example

```
#include <cuinterval/cuinterval.h>
```

```
constexpr auto f(auto x, auto y) { return pow(x - 1, 3) - sqr(x) + 4; }
global void kernel(auto *xs, auto *vs, auto *res, int n) {
   int i = threadIdx.x + blockIdx.x * blockDim.x;
   if (i < n) { res[i] = f(xs[i], ys[i]); }</pre>
int main() {
   constexpr int n = 256:
   using T = cu::interval <double >:
   T xs[n], vs[n], res[n], *d xs, *d vs, *d res:
   for (int i = 0; i < n; i++) { // generate dummy data
        double v = i:
        xs[i] = \{\{, lb = -v, .ub = v\}\};
       vs[i] = \{-v, v\}:
    3
   // ... alloc. memcpy host -> device
   kernel << n. 1>>>(d xs. d vs. d res. n):
   // ... memcpv device -> host
```

Interval Arithmetic

IA has fundamental shortcomings:

- Dependency problem: partially addressable through symbolic rewriting. E.g., $x^2 4x$ vs. $(x 2)^2 4$ vs. x(x 4).
- Wrapping Effect: fix would require different arithmetic.
- Limited by hardware intrinsics accuracy and rounding support.

McCormick Relaxations

Used in lower bounding of Branch & Bound methods.

Provides:

- $f^{cv}(x)$: Convex relaxation at x $f^{cc}(x)$: Concave relaxation at x
 - f(X) : Interval over X.

McCormick relaxation of $f(x) = (x - 1)^3 - x^2 + 4$

McCormick Relaxations from an AD perspective

Both conceptually start with a computational graph. Then:

McCormick relaxation:

- relaxations of elementary ops
- composition rule

AD:

- diff. rules of elementary ops
- chain rule

McCormick Composition Rule

Let $X \subseteq \mathbb{R}^n, Z \subseteq \mathbb{R}$ be nonempty convex sets. For a composite function $g = F \circ f$, where $f : X \to Z$ and $F : Z \to \mathbb{R}$, with known convex relaxations $f^{cv} : X \to \mathbb{R}$, $F^{cv} : Z \to \mathbb{R}$, and concave relaxations $f^{cc} : X \to \mathbb{R}$, $F^{cc} : Z \to \mathbb{R}$, the convex and concave relaxations of g can be computed by

$$g^{cv}(\boldsymbol{x}) = F^{cv}(\operatorname{mid}(f^{cv}(\boldsymbol{x}), f^{cc}(\boldsymbol{x}), z_{\min})), \tag{1}$$

and

$$g^{cc}(\boldsymbol{x}) = F^{cc}(\operatorname{mid}(f^{cv}(\boldsymbol{x}), f^{cc}(\boldsymbol{x}), z_{\max})), \tag{2}$$

respectively.

McCormick Relaxations: By Example

McCormick Relaxations: Constant

McCormick Relaxations: Concave

McCormick Relaxations: Concave

 $f_2(x) = -x^2$ over $x \in [0, 3]$ As f_2 is concave \rightarrow compute chord: $x^{L} = 0, \quad x^{U} = 3$ $f_2^{cv}(x)$ $= -(x^{U})^{2} + \frac{-(x^{U})^{2} - (-(x^{L})^{2})}{x^{U} - x^{L}}(x - x^{U})$ = -3X $f_2^{cc}(x) = -x^2$

McCormick Relaxations: Add

In general:

$$\begin{split} f_3(x) &= f_1(x) + f_2(x) \\ f_3^{cv}(x) &= f_1^{cv}(x) + f_2^{cv}(x) \\ f_3^{cc}(x) &= f_1^{cc}(x) + f_2^{cc}(x) \end{split}$$

So:

$$f_3^{cv}(x) = -3x + 4$$

 $f_3^{cc}(x) = -x^2 + 4$

McCormick Relaxations: Subtract

As

$$f_4(x) = x - 1$$

is affine:

$$f_4^{cv}(x) = x - 1$$

$$f_4^{cc}(x) = x - 1$$

DiffProg '25 Relaxed AD | Neil Kichler

McCormick Relaxations: Cubed

Let

$$f_5(x)=x^3$$

for $x \in [-1, 2]$.

McCormick Composition

$$g^{cv}(x) = F^{cv}(\operatorname{mid} \{f^{cv}(x), f^{cc}(x), z^{min}\})$$

$$g^{cc}(x) = F^{cc}(\operatorname{mid} \{f^{cv}(x), f^{cc}(x), z^{max}\})$$

See <u>Desmos</u>.

McCormick Relaxations: Result

Back to

$$f(x) = (x - 1)^3 + (-x^2 + 4)$$

for $x \in [0, 3]$.

Relaxations:

 $f^{cv}(x) = f^{cv}_5(x) + f^{cv}_3(x)$

$$f^{\rm cc}(\mathbf{x}) = f^{\rm cc}_5(\mathbf{x}) + f^{\rm cc}_3(\mathbf{x})$$

See Desmos.

CuMcCormick: Example

#include <cumccormick/cumccormick.cuh>

```
constexpr auto f(auto x, auto y) { return pow(x - 1, 3) - sqr(x) + 4; }
global void kernel(auto *xs, auto *vs, auto *res, int n) {
   int i = threadIdx.x + blockIdx.x * blockDim.x;
   if (i < n) { res[i] = f(xs[i], ys[i]); }</pre>
int main() {
   constexpr int n = 256:
   using T = cu::mccormick<double>:
   T xs[n], vs[n], res[n], *d xs, *d vs, *d res:
   for (int i = 0; i < n; i++) { // generate dummy data
        double v = i:
        xs[i] = \{\{ .lb = -v, .cv = -v, .cc = v, .ub = v \}\};
       vs[i] = \{-v, v\};
    3
   // ... alloc. memcpy host -> device
   kernel << n. 1>>>(d xs. d vs. d res. n):
   // ... memcpv device -> host
```

(Vector) Tangent AD

CuTangent:

- forward-mode operator-overloading based AD
- supports all the C++11 std::math functions
- supports all functions used in CuInterval/CuMcCormick

 \hookrightarrow mid, min, max have subgradient extensions

Tangent AD \leftrightarrow McCormick relaxation

mccormick<tangent<T>>tangent<mccormick<T>>Tangent of McCormick relaxationMcCormick relaxation of Tangent↓↓Linearized relaxationsNonlocal derivative information

Tangent of McCormick: Example

#include <cumccormick/cumccormick.cuh>
#include <cutangent/cutangent.cuh>

```
constexpr auto f(auto x, auto y) { return pow(x - 1, 3) - sgr(x) + 4; }
global void kernel(auto *xs. auto *vs. auto *res. int n) {
   int i = threadIdx.x + blockIdx.x * blockDim.x;
   if (i < n) { res[i] = f(xs[i], vs[i]); }
int main() {
   constexpr int n = 256:
   using T = cu::mccormick<cu::tangent<double>>:
   T xs[n], vs[n], res[n], *d xs, *d vs, *d res;
   for (int i = 0; i < n; i++) { // generate dummy data
        double v = i:
        xs[i] = \{\{ .lb = \{-v, o.o\}, .cv = \{-v, double(i == o)\}, .cc = \{v, double(i == o)\}, .ub = \{v, o.o\}\}\}
        vs[i] = \{-v, v\};
                                    // w.r.t variable o
   // ... alloc. memcpv host -> device
   kernel<<<n. 1>>>(d xs. d vs. d res. n):
   // ... memcpv device -> host
```

Cuda Graph: Example

Using stream capture:

cumccormick/examples/graph/capture.cu

Using manual construction:

cumccormick/examples/graph/manual.cu

DiffProg '25 Relaxed AD | Neil Kichler

Applicability to modern GPUs

Applicability to modern GPUs: Compute

Consider a H100 SM:

- fp32 vs. fp64: 2:1 ratio (🗸)
- INT32: address calculations (✓)
- SFU: special functions can occur frequently (✓)
- use of Tensor core (X)
- use of TMA (?)

In general:

- quite unlike matmul
- cannot "tile" computation

SM			14 Inste	
_			LTHISU	
	LC	Instruction C	ache	
	Warp S	cheduler (32 t	hread/clk)	
	Dispa	tch Unit (32 th	read/clk)	
	Registe	er File (16.38	4 x 32-bit)	
Register File (10,004 × 02-bit)				
INT32	FP32 FP32	FP64	1	
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64	TENSOR CORE	
INT32	FP32 FP32	FP64	4 th GENERATION	
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64	4	
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
INT32	FP32 FP32	FP64		
LD/ ST	LD/ LD/ LD ST ST ST	/ LD/ LD/ T ST ST	LD/ LD/ ST ST SFU	

General GPU considerations

- memory coalescing is vital
- use of (CUDA) shared memory ightarrow be aware of bank conflicts
- prefer registers > l1/shared > l2 > dram
- not too many registers to have decent potentially occupancy (although not as important on H100) -> depends on considered function
- address calculation for tangent seeding not free
- WIP: latency hiding with double buffering of tangent seeding and computation

GPU Tangent layout

Many possible shared memory layouts imaginable:

AOS:

```
template<typename T>
struct tangent { T v; T d; };
```

```
mccormick<tangent<T>> *xs;
```

- unnecessary duplication of value

GPU Tangents layout

Vector-Tangent:

```
template<typename T, int N>
struct tangents { T v; T d[N]; };
```

```
mccormick<tangents<T>> *xs;
```

lb.v	lb.d[o]	lb.d[1]	lb.d[2]	• • •	lb.d[30]	lb.d[31]
CV.V	cv.d[0]	cv.d[1]	cv.d[2]	• • •	cv.d[30]	cv.d[31]
cc.v	cv.d[o]	cc.d[1]	cc.d[2]	• • •	cc.d[30]	cc.d[31]
ub.v	ub.d[o]	ub.d[1]	ub.d[2]	• • •	ub.d[30]	ub.d[31]

- + natural way to implement it
- bank conflicts

GPU Tangents layout

Tangent layout in shared memory could be:

	lb.	V CV.V	cc.v	ub.v	
lb.d[o]	lb.d[1]	lb.d[2]	• • •	lb.d[30]	lb.d[31]
cv.d[0]	cv.d[1]	cv.d[2]	• • •	cv.d[30]	cv.d[31]
cv.d[0]	cc.d[1]	cc.d[2]	• • •	cc.d[30]	cc.d[31]
ub.d[0]	ub.d[1]	ub.d[2]	• • •	ub.d[30]	ub.d[31]

- + reduced bank conflicts
- inter-warp bank conflicts still present
- addressing/data movement more nuanced

What scaling behavior can we expect?

CuMcCormick vs MC++

1 variable, on 1 node @CLAIX-2023-ML [5]

CuMcCormick CUDA Graph vs MC++ Graph

1 variable, on 1 node @CLAIX-2023-ML [5]

Next steps

- O. Further optimizations with async load and TMA swizzle operations
- 1. Further vector tangent \leftrightarrow mccormick exploration
- 2. Explore JIT landscape
- 3. Higher-order combinations of AD and Relaxations? (will benefit from differentiable McCormick relaxations [6])
- 4. Compressed seeding?
- 5. Adjoint AD \leftrightarrow Relaxation possible [7]
- 6. New applications? (e.g., Multistart non-convex optimization)

Conclusion

Ultimately:

- next-generation scientific software frameworks should be open to extension and allow reinterpretation of existing code
- challenges for GPUs persist
- CUDA graphs + operator overloading is a flexible solution, but with pain points.
- opportunities for JIT-compilation?

References

- [1] Jens Deussen and Uwe Naumann. "Subdomain separability in global optimization". In: Journal of Global Optimization 86.3 (2023), pp. 573–588.
- [2] Dominik Bongartz et al. "Deterministic global optimization of steam cycles using the IAPWS-IF97 model". In: *Optimization & Engineering* 21 (2020), pp. 1095–1131.
- [3] Ramon E. Moore et al. *Introduction to Interval Analysis*. Society for Industrial and Applied Mathematics, 2009.
- [4] IEEE. "IEEE Standard for Interval Arithmetic". In: IEEE Std 1788-2015 (2015), pp. 1–97.
- [5] CLAIX 2023 hardware overview. 2023. URL: https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/ fbd107191cf14c4b8307f44f545cf68a/.
- [6] Kamil A Khan et al. "Differentiable mccormick relaxations". In: *Journal of Global Optimization* 67 (2017), pp. 687–729.
- [7] Markus Beckers et al. "Adjoint Mode Computation of Subgradients for McCormick Relaxations". In: *Recent Advances in Algorithmic Differentiation*. 2012, pp. 103–113. ISBN: 978-3-642-30023-3.

Backup Slides

More on Interval Arithmetic Rounding

We use the CUDA intrinsic functions which use round-to-nearest-even.

- if halway between two floating point numbers \rightarrow pick even.
- else \rightarrow pick nearest.
- Error of 1 ulp in intrinsic results in 2.5 ulp max error for interval lower & upper bound, i.e. for lower bound: $|\inf(F_{analytic}(X)) \inf(F(X))| \le 2.5$.
- 8 Scenarios:
 - halfway (odd above/below),
 - closer to even/odd (left/right),
 - exact (even/odd).

Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):

Interval Arithmetic Rounding

Scenarios given 1 ulp error (round-to-nearest-even):

Custom problem for scaling behavior

Consider

$$f(x) = \sum_{i=1}^{n} \cos(x_i - 1)^2 + (x_i - 1)^3 + (x_i - 1)^4$$

Let n = 10000, and compute 1024 McCormick relaxations at the same time.

Direct kernel

CUDA single kernel launch

Cuda graphs (stream captured)

CUDA graph capture launch

DiffProg '25 Relaxed AD | Neil Kichler

Direct kernel vs Cuda graphs

Summary:

- For small test functions (Ackley, Beale, Rosenbrock) Cuda graphs are 6-8 times as slow as a single kernel
- Larger test function on par
- Memcpy dominates for larger n
- Most CPU time wasted waiting for synchronization
- Actual kernel launch overhead tiny with CUDA graphs.

Integration in MAiNGO

Approach:

- Create CUDA graph from existing MC++ graph
- + Rest of the solver unchanged
- + Same code for interval arithmetic
- Efficiency problems of DAG remain present
- MAiNGO currently not built for executing many McCormick relaxations at the same time.