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Relaxations

A deterministic way to bound outputs of a function.

Interval Arithmetic:
• Box with lower/upperbound in range

McCormick Relaxations:
• Interval +
• Convex/Concave relaxation

Relaxation of nonconvex,
nonconcave function.
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Why relax?

• uncertainty quantification

• verified computing

• constraint propagation/satisfaction

• nonconvex optimization:
• subdomain separability [1]
• lower bounding in (deterministic) global optimization [2]
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Example: Deterministic Global Optimization



Deterministic Global Optimization

Overview:
• Usually done via Branch & Bound
• Performs:

• Lower bounding: relaxations.
• Upper bounding: local solver.

• Relies heavily on (convex) relaxations
↪→ McCormick relaxations.

• subgradients of relaxation computed for
LP solver

High-level illustration
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Deterministic Global Optimization

Lower bounding
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Deterministic Global Optimization

Local solver start at ⋆
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Deterministic Global Optimization

Upper bounding
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Deterministic Global Optimization

Domain splitting (Branch)
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Deterministic Global Optimization

Determine tighter bounds
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Deterministic Global Optimization
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Why here at DiffProg?

Want to explore the applicability of GPUs for Relaxation ↔ AD, besides

• shares a lot of similarities with AD

• one application of diff. programming

• yet another perspective on "reinterpretation" of
computational programs
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Relaxations + AD



Interval Arithmetic
Computes function bounds:

Replace x ∈ R with X ∈ IR:
IR := {[a,b] | a ≤ b ∧ a,b ∈ R},

X = [a,b] := {x ∈ R | a ≤ x ≤ b}.

↪→ interval extension:
F(X) ⊇ {f (x) | x ∈ X}.

Refinement of: sin(cos(xy)y) > 0.5

Fundamental Theorem of Interval Arithmetic
The interval extension F : IRn → IR of f : Rn → R is guaranteed to enclose

the range of f over the inputs in X = (X0, · · · , Xn), i.e., range(f ) ⊆ F(X) [3].
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Interval Arithmetic in CUDA
CuInterval: Based on IEEE Std 1788-2015 (Interval Arithmetic Standard [4])

• Implements CUDA kernels for all basic operations:
pos, neg, add, sub, mul, div, recip, sqr, sqrt, fma, pown, pow, rootn, cbrt, exp, exp2, exp10, expm1, log, log2, log10, log1p, sin, cos, tan , asin,

acos, atan, atan2, sinpi, cospi, sinh, cosh, tanh, asinh, acosh, atanh, sign, ceil, floor, trunc, roundTiesToEven, roundTiesToAway, abs, min, max

• and set-based operations:
inf, sup, mid, wid, rad, mag, mi, equa, subset, interior, disjoint, isEmpty, isEntire, less, strictLess, precedes, strictPrecedes, isMember,

isSingleton, isCommonInterval, intersection, convexHul, cancelMinus, cancelPlus.

• with outward rounding accounting for intrinsic errors
(e.g., exp(x) w/ 1 ulp error).

We only support bare and set-based (extended) interval operations.
No other flavors (e.g., Kaucher), no decorators, or other aspects of the standard.
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CuInterval: Example
# include < c u i n t e r v a l / c u i n t e r v a l . h>

constexpr auto f ( auto x , auto y ) { return pow( x − 1 , 3 ) − sqr ( x ) + 4 ; }

__global__ void kernel ( auto * xs , auto * ys , auto * res , i n t n ) {
i n t i = threadIdx . x + blockIdx . x * blockDim . x ;
i f ( i < n ) { res [ i ] = f ( xs [ i ] , ys [ i ] ) ; }

}

i n t main ( ) {
constexpr i n t n = 256 ;
using T = cu : : i n t e r v a l <double > ;
T xs [ n ] , ys [ n ] , res [ n ] , *d_xs , *d_ys , * d_res ;
for ( i n t i = 0 ; i < n ; i ++ ) { // generate dummy data

double v = i ;
xs [ i ] = { { . lb = −v , . ub = v } } ;
ys [ i ] = { −v , v } ;

}

// . . . a l loc , memcpy host −> device
kernel <<<n , 1 > > >( d_xs , d_ys , d_res , n ) ;
// . . . memcpy device −> host

}
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Interval Arithmetic

IA has fundamental shortcomings:

• Dependency problem: partially addressable through symbolic
rewriting. E.g., x2 − 4x vs. (x − 2)2 − 4 vs. x(x − 4).

• Wrapping Effect: fix would require different arithmetic.

• Limited by hardware intrinsics accuracy and rounding support.

DiffProg ’25 Relaxed AD | Neil Kichler 14



McCormick Relaxations

Used in lower bounding of
Branch & Bound methods.

Provides:
f cv (x) : Convex relaxation at x
f cc (x) : Concave relaxation at x

f (X) : Interval over X.

McCormick relaxation of f (x) = (x − 1)3 − x2 + 4
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McCormick Relaxations from an AD
perspective

Both conceptually start with a computational graph. Then:

McCormick relaxation:
• relaxations of elementary

ops
• composition rule

AD:
• diff. rules of elementary ops
• chain rule
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McCormick Composition Rule

Let X ⊆ Rn, Z ⊆ R be nonempty convex sets. For a composite function
g = F ◦ f , where f : X → Z and F : Z → R, with known convex relaxations
f cv : X → R, Fcv : Z → R, and concave relaxations f cc : X → R, Fcc : Z → R,
the convex and concave relaxations of g can be computed by

gcv(x) = Fcv(mid(f cv(x), f cc(x), zmin)), (1)

and
gcc(x) = Fcc(mid(f cv(x), f cc(x), zmax)), (2)

respectively.
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McCormick Relaxations: By Example
+

+

−(·)2

x

4

(·)3

(·)− 1

x
Example: f (x) = (x − 1)3 − x2 + 4 with x ∈ [0, 3] ⊂ R.
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McCormick Relaxations: Constant
+

+

−(·)2
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4

(·)3

(·)− 1

x
f1(x) = 4 ⇒ f cv

1 (x) = f cc
1 (x) = 4
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McCormick Relaxations: Concave
+

+

−(·)2

x

4

(·)3

(·)− 1

x
f2(x) = −x2 ⇒ f cv

2 (x) = −3x, f cc
2 (x) = −x2 (for x ∈ [0, 3])
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McCormick Relaxations: Concave
f2(x) = −x2 over x ∈ [0, 3]

As f2 is concave → compute chord:

xL = 0, xU = 3

f cv
2 (x)

= −(xU)2 + −(xU)2−(−(xL)2)
xU−xL (x − xU)

= −3x

f cc
2 (x) = −x2
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McCormick Relaxations: Add

In general:
f3(x) = f1(x) + f2(x)
f cv
3 (x) = f cv

1 (x) + f cv
2 (x)

f cc
3 (x) = f cc

1 (x) + f cc
2 (x)

So:
f cv
3 (x) = −3x + 4

f cc
3 (x) = −x2 + 4

+

+

−(·)2

x

4

(·)3

(·)− 1

x
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McCormick Relaxations: Subtract

As
f4(x) = x − 1

is affine:

f cv
4 (x) = x − 1

f cc
4 (x) = x − 1

+
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DiffProg ’25 Relaxed AD | Neil Kichler 23



McCormick Relaxations: Cubed
Let

f5(x) = x3,

for x ∈ [−1, 2].

McCormick Composition
gcv(x) = Fcv(mid{f cv(x), f cc(x), zmin})
gcc(x) = Fcc(mid{f cv(x), f cc(x), zmax})

See Desmos.
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McCormick Relaxations: Result
Back to

f (x) = (x − 1)3 + (−x2 + 4)

for x ∈ [0, 3].

Relaxations:

f cv(x) = f cv
5 (x) + f cv

3 (x)

f cc(x) = f cc
5 (x) + f cc

3 (x)

See Desmos.
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CuMcCormick: Example
# include <cumccormick/cumccormick.cuh>

constexpr auto f ( auto x , auto y ) { return pow( x − 1 , 3 ) − sqr ( x ) + 4 ; }

__global__ void kernel ( auto * xs , auto * ys , auto * res , i n t n ) {
i n t i = threadIdx . x + blockIdx . x * blockDim . x ;
i f ( i < n ) { res [ i ] = f ( xs [ i ] , ys [ i ] ) ; }

}

i n t main ( ) {
constexpr i n t n = 256 ;
using T = cu : : mccormick<double > ;
T xs [ n ] , ys [ n ] , res [ n ] , *d_xs , *d_ys , * d_res ;
for ( i n t i = 0 ; i < n ; i ++ ) { // generate dummy data

double v = i ;
xs [ i ] = { { . lb = −v , .cv = -v, .cc = v , . ub = v } } ;
ys [ i ] = { −v , v } ;

}

// . . . a l loc , memcpy host −> device
kernel <<<n , 1 > > >( d_xs , d_ys , d_res , n ) ;
// . . . memcpy device −> host

}
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(Vector) Tangent AD

CuTangent:

• forward-mode operator-overloading based AD

• supports all the C++11 std::math functions

• supports all functions used in CuInterval/CuMcCormick

↪→ mid, min, max have subgradient extensions
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Tangent AD ↔ McCormick relaxation

mccormick<tangent<T>> tangent<mccormick<T>>

Tangent of McCormick relaxation McCormick relaxation of Tangent
↓ ↓

Linearized relaxations Nonlocal derivative information
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Tangent of McCormick: Example
# include <cumccormick/cumccormick.cuh>
# include <cutangent/cutangent.cuh>

constexpr auto f ( auto x , auto y ) { return pow( x − 1 , 3 ) − sqr ( x ) + 4 ; }

__global__ void kernel ( auto * xs , auto * ys , auto * res , i n t n ) {
i n t i = threadIdx . x + blockIdx . x * blockDim . x ;
i f ( i < n ) { res [ i ] = f ( xs [ i ] , ys [ i ] ) ; }

}

i n t main ( ) {
constexpr i n t n = 256 ;
using T = cu : : mccormick<cu::tangent<double>> ;
T xs [ n ] , ys [ n ] , res [ n ] , *d_xs , *d_ys , * d_res ;
for ( i n t i = 0 ; i < n ; i ++ ) { // generate dummy data

double v = i ;
xs [ i ] = { { . lb = { −v , 0 . 0 } , . cv = { −v , double ( i == 0) } , . cc = { v , double ( i == 0) } , . ub = { v , 0 . 0 } } } ;
ys [ i ] = { −v , v } ; // w. r . t var iab le 0

}
// . . . a l loc , memcpy host −> device
kernel <<<n , 1 > > >( d_xs , d_ys , d_res , n ) ;
// . . . memcpy device −> host

}
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Cuda Graph: Example

Using stream capture:

cumccormick/examples/graph/capture.cu

Using manual construction:

cumccormick/examples/graph/manual.cu
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Applicability to modern GPUs



Applicability to modern GPUs: Compute
Consider a H100 SM:

• fp32 vs. fp64: 2:1 ratio (✓)
• INT32: address

calculations (✓)
• SFU: special functions

can occur frequently (✓)
• use of Tensor core (✗)
• use of TMA (?)

In general:
• quite unlike matmul
• cannot "tile" computation
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General GPU considerations

• memory coalescing is vital

• use of (CUDA) shared memory → be aware of bank conflicts

• prefer registers > l1/shared > l2 > dram

• not too many registers to have decent potentially occupancy (although
not as important on H100) -> depends on considered function

• address calculation for tangent seeding not free

• WIP: latency hiding with double buffering of tangent seeding and
computation
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GPU Tangent layout

Many possible shared memory layouts imaginable:

AOS:
template<typename T>
struct tangent { T v; T d; };

mccormick<tangent<T>> *xs;

- unnecessary duplication of value
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GPU Tangents layout
Vector-Tangent:

template<typename T, int N>
struct tangents { T v; T d[N]; };

mccormick<tangents<T>> *xs;

lb.v lb.d[0] lb.d[1] lb.d[2] ... lb.d[30] lb.d[31]
cv.v cv.d[0] cv.d[1] cv.d[2] ... cv.d[30] cv.d[31]
cc.v cv.d[0] cc.d[1] cc.d[2] ... cc.d[30] cc.d[31]
ub.v ub.d[0] ub.d[1] ub.d[2] ... ub.d[30] ub.d[31]

+ natural way to implement it

- bank conflicts
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GPU Tangents layout
Tangent layout in shared memory could be:

lb.v cv.v cc.v ub.v
lb.d[0] lb.d[1] lb.d[2] ... lb.d[30] lb.d[31]
cv.d[0] cv.d[1] cv.d[2] ... cv.d[30] cv.d[31]
cv.d[0] cc.d[1] cc.d[2] ... cc.d[30] cc.d[31]
ub.d[0] ub.d[1] ub.d[2] ... ub.d[30] ub.d[31]

+ reduced bank conflicts

- inter-warp bank conflicts still present

- addressing/data movement more nuanced
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What scaling behavior can we expect?



CuMcCormick vs MC++
1 variable, on 1 node @CLAIX-2023-ML [5]
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CuMcCormick CUDA Graph vs MC++ Graph
1 variable, on 1 node @CLAIX-2023-ML [5]
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Next steps

0. Further optimizations with async load and TMA swizzle operations

1. Further vector tangent ↔ mccormick exploration

2. Explore JIT landscape

3. Higher-order combinations of AD and Relaxations?
(will benefit from differentiable McCormick relaxations [6])

4. Compressed seeding?

5. Adjoint AD ↔ Relaxation possible [7]

6. New applications? (e.g., Multistart non-convex optimization)
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Conclusion
Ultimately:

• next-generation scientific software frameworks should be open to
extension and allow reinterpretation of existing code

• challenges for GPUs persist

• CUDA graphs + operator overloading is a flexible solution, but with
pain points.

• opportunities for JIT-compilation?
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More on Interval Arithmetic Rounding
We use the CUDA intrinsic functions which use round-to-nearest-even.

• if halway between two floating point numbers → pick even.
• else → pick nearest.
• Error of 1 ulp in intrinsic results in 2.5 ulp max error for interval lower

& upper bound, i.e. for lower bound: |inf(Fanalytic(X))− inf(F(X))| ≤ 2.5.
• 8 Scenarios:

• halfway (odd above/below),
• closer to even/odd (left/right),
• exact (even/odd).
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Interval Arithmetic Rounding
Scenarios given 1 ulp error (round-to-nearest-even):

[∆ulp]−1 0 1
halfway (odd above)

[∆ulp]−1 0 1
halfway (odd below)

[∆ulp]−1 0 1
closer to even (left)

[∆ulp]−1 0 1
closer to even (right)
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Interval Arithmetic Rounding
Scenarios given 1 ulp error (round-to-nearest-even):

[∆ulp]0 1 2
closer to odd (left)

[∆ulp]0 1 2
closer to odd (right)

[∆ulp]−1 0 1
exact (even)

[∆ulp]0 1 2
exact (odd)
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Custom problem for scaling behavior

Consider

f (x) =
n∑

i=1

cos(xi−1)2+(xi−1)3+(xi−1)4

Let n = 10000, and compute 1024
McCormick relaxations at the
same time.
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Direct kernel

CUDA single kernel launch
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Cuda graphs (stream captured)

CUDA graph capture launch
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Direct kernel vs Cuda graphs

Summary:

• For small test functions (Ackley, Beale, Rosenbrock) Cuda graphs are
6-8 times as slow as a single kernel

• Larger test function on par

• Memcpy dominates for larger n

• Most CPU time wasted waiting for synchronization

• Actual kernel launch overhead tiny with CUDA graphs.
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Integration in MAiNGO

Approach:

• Create CUDA graph from existing MC++ graph

+ Rest of the solver unchanged

+ Same code for interval arithmetic

- Efficiency problems of DAG remain present

- MAiNGO currently not built for executing many McCormick relaxations
at the same time.
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