Skip to content

Boolean

bool equal(interval<T> a, interval<T> b)

[source]
Details

Returns true if intervals aa and bb are equal.

±0 ulps

=:IR×IRB=: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool subset(interval<T> a, interval<T> b)

[source]
Details

Returns true if aa is a subset of bb.

±0 ulps

:IR×IRB\subseteq: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool interior(interval<T> a, interval<T> b)

[source]
Details

Returns true if aa is in the interior of bb.

±0 ulps

interior:IR×IRB\mathrm{interior}: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool disjoint(interval<T> a, interval<T> b)

[source]
Details

Returns true if intervals aa and bb are disjoint.

±0 ulps

disjoint:IR×IRB\mathrm{disjoint}: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool less(interval<T> a, interval<T> b)

[source]
Details

Returns true if aba \leq b for intervals.

±0 ulps

:IR×IRB\leq: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool precedes(interval<T> a, interval<T> b)

[source]
Details

Returns true if aa precedes bb.

±0 ulps

:IR×IRB\preceq: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool empty(interval<T> x)

[source]
Details

Returns true if interval xx is empty.

±0 ulps

isEmpty:IRB\mathrm{isEmpty}: \mathbb{IR} \rightarrow \mathbb{B}


bool entire(interval<T> x)

[source]
Details

Returns true if interval xx is entire (covers all values).

±0 ulps

isEntire:IRB\mathrm{isEntire}: \mathbb{IR} \rightarrow \mathbb{B}


bool just_zero(interval<T> x)

[source]
Details

Returns true if interval xx is exactly zero.

±0 ulps

justZero:IRB\mathrm{justZero}: \mathbb{IR} \rightarrow \mathbb{B}


bool contains(interval<T> x, T y)

[source]
Details

Returns true if interval xx contains value yy.

±0 ulps

contains:IR×RB\mathrm{contains}: \mathbb{IR}\times\mathbb{R} \rightarrow \mathbb{B}


bool bounded(interval<T> x)

[source]
Details

Returns true if interval xx is bounded.

±0 ulps

bounded:IRB\mathrm{bounded}: \mathbb{IR} \rightarrow \mathbb{B}


bool isfinite(interval<T> x)

[source]
Details

Returns true if interval xx is finite.

±0 ulps

isfinite:IRB\mathrm{isfinite}: \mathbb{IR} \rightarrow \mathbb{B}


bool strict_less_or_both_inf(T x, T y)

[source]
Details

Returns true if x<yx < y or both are infinite.

±0 ulps

strictLessOrBothInf:R×RB\mathrm{strictLessOrBothInf}: \mathbb{R}\times\mathbb{R} \rightarrow \mathbb{B}


bool strict_less(interval<T> a, interval<T> b)

[source]
Details

Returns true if a<ba < b strictly.

±0 ulps

<:IR×IRB<: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool strict_precedes(interval<T> a, interval<T> b)

[source]
Details

Returns true if aa strictly precedes bb.

±0 ulps

:IR×IRB\prec: \mathbb{IR}\times\mathbb{IR} \rightarrow \mathbb{B}


bool isinf(interval<T> x)

[source]
Details

Returns true if interval xx is infinite.

±0 ulps

isinf:IRB\mathrm{isinf}: \mathbb{IR} \rightarrow \mathbb{B}


bool isnai(interval<T> x)

[source]
Details

Returns true if interval xx is Not an Interval (NAI).

±0 ulps

isnai:IRB\mathrm{isnai}: \mathbb{IR} \rightarrow \mathbb{B}


bool is_member(T x, interval<T> y)

[source]
Details

Returns true if xyx \in y.

±0 ulps

:R×IRB\in: \mathbb{R}\times\mathbb{IR} \rightarrow \mathbb{B}


bool is_singleton(interval<T> x)

[source]
Details

Returns true if interval xx is a singleton.

±0 ulps

isSingleton:IRB\mathrm{isSingleton}: \mathbb{IR} \rightarrow \mathbb{B}


bool is_common_interval(interval<T> x)

[source]
Details

Returns true if interval xx is a common interval.

±0 ulps

isCommonInterval:IRB\mathrm{isCommonInterval}: \mathbb{IR} \rightarrow \mathbb{B}


bool isnormal(interval<T> x)

[source]
Details

Returns true if interval xx is normal.

±0 ulps

isnormal:IRB\mathrm{isnormal}: \mathbb{IR} \rightarrow \mathbb{B}


bool is_atomic(interval<T> x)

[source]
Details

Returns true if interval xx is atomic.

±0 ulps

isAtomic:IRB\mathrm{isAtomic}: \mathbb{IR} \rightarrow \mathbb{B}